Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 202: 110891, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32593097

RESUMO

Organophosphate ester contaminants, including organophosphate pesticides (OPPs) and organophosphate flame retardants (OPFRs) are ubiquitous in surface water and pose a significant risk to aquatic organisms, thus it is important to develop effective methods for long-term monitoring of these emerging compounds. Polar organic chemical integrative sampler (POCIS) has become a promising monitoring tool for waterborne contaminants, yet recent studies found that the commonly used polyethersulfone (PES) membrane strongly sorbed some moderately hydrophobic compounds, resulting in long lag-phase for chemical accumulation in POCIS. In the present study, 0.45-µm nylon membranes was selected as POCIS diffusion-limiting membrane to design a new POCIS-Nylon configuration for analyzing moderately hydrophobic OPPs and OPFRs in water. The POCIS-Nylon had negligible lag-phase due to low sorption of OPPs and OPFRs to nylon membrane. Meanwhile, linear accumulation time and sensitivity for target contaminants using POCIS-Nylon retained similar to the traditional POCIS. Water velocity and chemical concentration had little impact on sampling rate (Rs), validating that the POCIS-Nylon was suitable for various water conditions. Finally, the occurrence of OPPs and OPFRs in urban waterways of Guangzhou, China was evaluated using the POCIS-Nylon with Rs values that were calibrated in the laboratory. The average concentration of OPPs was 4.97 ± 1.35 ng/L (range: 2.64 ± 1.28-6.54 ± 0.18 ng/L) and the average concentration of OPFRs was 400 ± 88 ng/L (range: 316 ± 24-615 ± 36 ng/L) across nine sampling sites. The present study provides a way to resolve the inherent challenge of accumulating hydrophobic substances by POCIS.


Assuntos
Monitoramento Ambiental/métodos , Nylons/química , Poluentes Químicos da Água/análise , Calibragem , China , Retardadores de Chama/análise , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/química , Organofosfatos/análise , Polímeros , Sulfonas
2.
J Sep Sci ; 39(22): 4439-4448, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27734586

RESUMO

Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide-ß-cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first-order kinetic model (R2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir-Freundlich model (R2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid-phase extraction materials was investigated and the results indicated that using acrylamide-ß-cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid-phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%.


Assuntos
Camellia/química , Impressão Molecular , Saponinas/isolamento & purificação , Chá/química , Acrilamida/química , Adsorção , Polímeros , Extração em Fase Sólida , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA