Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(4): 2350-2362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156432

RESUMO

The widespread presence of microplastics (MPs) in the environment poses a significant threat to biological survival and human health. However, our understanding of the toxic effects of MPs on the kidneys remains limited. This study aimed to investigate the underlying mechanism of the toxic effects of MPs on the kidneys using an ischemia-reperfusion (IR) mouse model. Four-week-old ICR mice were exposed to 0.5 µm MPs for 12 weeks prior to IR injury. The results showed that MPs exposure could aggravate the IR-induced damage to renal tubules and glomeruli. Although there were no significant changes in blood urea nitrogen and serum creatinine levels 7 days after IR, MPs treatment resulted in a slight increase in both parameters. In addition, the expression levels of inflammatory factors (MCP-1 and IL-6) at the mRNA level, as well as macrophage markers (CD68 and F4/80), were significantly higher in the MPs + IR group than in the Sham group after IR. Furthermore, MPs exposure exacerbated IR-induced renal fibrosis. Importantly, the expression of pyroptosis-related genes, including NLRP3, ASC, GSDMD, cleaved caspase-1, and IL-18, was significantly upregulated by MPs, indicating that MPs exacerbate pyroptosis in the context of renal IR. In conclusion, our findings suggest that MPs exposure can aggravate renal IR-induced pyroptosis by activating NLRP3-GSDMD signaling.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microplásticos , Plásticos/metabolismo , Camundongos Endogâmicos ICR , Rim/metabolismo , Traumatismo por Reperfusão/genética
2.
Ecotoxicol Environ Saf ; 256: 114821, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989554

RESUMO

Microplastics (MPs) may pollute drinking water, accumulate in the food chain, and release toxic chemicals that may cause a variety of diseases. The detrimental effects of MPs on kidney injury and fibrosis under long-term accumulation have not been fully documented. In this study, mice were exposed to MPs with three different diameters (80 nm, 0.5 µm, and 5 µm) to investigate the detrimental influences of MPs on the kidney. The results showed that MPs of different diameters caused varying degrees of injury to the murine kidney. MPs exposure can induce an inflammatory response, oxidative stress, and cell apoptosis in the kidney and induce kidney injury, which ultimately promotes kidney fibrosis. Furthermore, transcriptome data revealed that chronic exposure to MPs could alter the expressions of multiple genes related to immune response (80 nm) and circadian rhythm (0.5 µm, and 5 µm). Overall, our data provide new evidence and potential research for investigating the harm of MPs to kidney of mammals and even humans.


Assuntos
Microplásticos , Plásticos , Humanos , Animais , Camundongos , RNA-Seq , Rim , Apoptose , Poliestirenos , Mamíferos
3.
Ecotoxicol Environ Saf ; 267: 115618, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939553

RESUMO

Nanoplastics (NPs) and Microplastics (MPs) pollution has become a severe threat to the planet and is a growing concern. However, their effects on male reproductive toxicity remain poorly understood. In this study, a series of morphological analyses were completed to explore the influence of NPs and MPs exposure on the testis in mice. After 12-weeks exposure, although both NPs and MPs exposure can lead to reproductive toxicity, compared with NPs exposure, exposure to MPs leads to a more significant increase in reproductive toxicity dependent on some particle size. Moreover, increased reproductive toxicities, including increased spermatogenesis disorders, and sperm physiological abnormality, oxidative stress, testis inflammation was more associated with MPs group than NPs group. Ultra-pathological structure observed by transmission electron microscopy indicated that both NPs and MPs have different effects on spermatogonia, spermatocytes and Sertoli cells. Exposure to MPs resulted in decreased Sertoli cell numbers and reduced Leydig cell area, and showed no effects on differentiation of Leydig cells by the expression level of the Insulin-Like factor 3 (INSL3) in Leydig cells. Transcriptomic sequencing analysis provided valuable insights into the differential effects of NPs and MPs on cellular processes. Specifically, our findings demonstrated that NPs were predominantly involved in the regulation of steroid biosynthesis, whereas MPs primarily influenced amino acid metabolism. This study demonstrates the effect of adult-stage reproductive toxicity in mice after exposure to NPs and MPs, which will deep the understanding of the NPs and MPs induced toxicity.


Assuntos
Microplásticos , Testículo , Masculino , Animais , Camundongos , Microplásticos/toxicidade , Plásticos , Sêmen , Espermatozoides
4.
J Biomater Sci Polym Ed ; 23(9): 1217-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21639995

RESUMO

Soluble eggshell membrane protein (SEP), isolated from natural eggshell membrane, was co-electrospun with biodegradable synthetic polymers poly(propylene carbonate) (PPC) and poly(lactic acid) (PLA) in various proportions from 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) solutions in order to prepare fibrous scaffolds having simultaneously good mechanical properties and biocompatibility. The fiber morphology was observed by field emission scanning electron microscopy, showing uniform fibers with diameter of 1.2-1.0 and 1.3-0.7 um for PPC/SEP and PLA/SEP blend fibers, respectively. Transmission electron microscopy observation shows that the blend fibers have domain-matrix phase morphology with fiber-like SEP domains in the PPC or PLA matrix, indicating the occurrence of phase separation, although interaction exists between PPC (or PLA) and SEP, as revealed by attenuated total reflectance Fourier transform infrared spectroscopy. The mechanical properties were evaluated by uniaxial tensile tests and showed that both the tensile strength and elongation at break increase with increasing incorporation of PPC (or PLA). The surface composition was investigated by X-ray photoelectron spectroscopy and SEP was found on the fiber surfaces, and as a result the surfaces of the fibrous scaffolds are superhydrophilic. NIH3T3 cell culture tests demonstrate that the PPC/SEP and PLA/SEP blend fibrous scaffolds have a much improved biocompatibility compared to pure PPC or PLA fibrous scaffolds.


Assuntos
Proteínas do Ovo/química , Ácido Láctico/química , Polímeros/química , Polipropilenos/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Proteínas do Ovo/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Células NIH 3T3/citologia , Células NIH 3T3/fisiologia , Espectroscopia Fotoeletrônica , Poliésteres , Propanóis/química , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA