Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 16: 1221-1229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628019

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of vascular endothelial and smooth muscle cells and causes occlusion of pulmonary arterioles that eventually results in right heart failure and death. The platelet-derived growth factor (PDGF) plays a prominent role in abnormal remodeling of pulmonary resistance vessels. Imatinib mesylate (IM), a PDGF-receptor tyrosine kinase inhibitor, was able to ameliorate PAH by reversing pulmonary vascular remodeling. METHODS: In the present study, IM-loaded liposomes (IM-LPs) were developed and administered via the pulmonary route to delay the drug release and improve patient compliance for the treatment of PAH. The IM-LPs were prepared by the transmembrane gradient method with the spherical vesicles. The compatibility of the IM-LPs was studied by determining the viability of pulmonary arterial smooth muscle cells (PASMCs). Particle uptake by rat PASMCs was evaluated by incubating the particles with rat PASMCs. Pharmacokinetic studies were performed in male SD rats. RESULTS: The IM-LPs showed an average size of 101.6 ± 50.80 nm with a zeta potential value of 19.66 ± 0.55 mV, a PDI of 0.250 and 81.96% ± 0.98% drug entrapment efficiency, meanwhile displayed a sustained release profile. Liposomes obviously increased intracellular accumulation of Rhodamine B by PASMCs using the fluorescence microscopic. Following intratracheal administration to rats, IM-LPs not only extended the half-life of IM, but also prolonged retention of IM compared with plain IM solution after intratracheal and intravenous administration. CONCLUSION: The study show potential applications of the LPs for pulmonary delivery of IM and the method for the development of LPs in sustained release of IM for better therapeutic outcomes. Conclusively, the prepared IM-LPs were well designed in nanosized ranges and may be a promising formulation for pulmonary delivery of IM.


Assuntos
Sistemas de Liberação de Medicamentos , Mesilato de Imatinib/farmacocinética , Pulmão/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Mesilato de Imatinib/sangue , Mesilato de Imatinib/farmacologia , Lipossomos , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Ratos Sprague-Dawley
2.
Bioresour Technol ; 282: 331-338, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30877914

RESUMO

Accelerants can effectively enhance the performance of anaerobic digestion (AD) system. The effects of optimized steel slag as accelerant in the AD of cow manure and the fertility utilization of the digestate were investigated. Results show that all steel slags collected from different iron and steel companies (slag-1, slag-2, and slag-3) positively affect AD performance in terms of enhancing the biogas yield, methane yield, and chemical oxygen demand (COD) degradation rate. The cumulative biogas yield, methane yield, and COD degradation rate of slag-2 are 507.29 mL/g VS, 274.70 mL/g VS, and 58.62%, respectively. Thermal analysis reveals that the digestate with steel slag has excellent thermal stability and potential application as a component of nitrogen, phosphorus, and potassium organic compound fertilizers. The use of different steel slags as accelerants in the AD system provides a safe and economical avenue to realize the resource utilization and harmless treatment of waste resource.


Assuntos
Fertilizantes , Anaerobiose , Animais , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Bovinos , Esterco/microbiologia , Metano/biossíntese , Nitrogênio/metabolismo , Fósforo/metabolismo , Aço
3.
J Neurotrauma ; 30(7): 597-607, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23186154

RESUMO

Acute membrane damage due to traumatic brain injury (TBI) is a critical precipitating event. However, the subsequent effects of the mechanical trauma, including mitochondrial and lysosomal membrane permeability (MOMP and LMP) remain elusive. The main objective of the current study was to assess the role of a putative membrane-resealing agent poloxamer 188 (P188) in MOMP and LMP in response to a well-defined mechanical insult. Using an in vitro cell shearing device (VCSD), mechanical injury resulted in immediate disruption of membrane integrity in cultured primary neurons, and neurons were treated with P188 or a cathepsin B inhibitor (CBI) after VCSD 10 min. The protective effect of P188 on cultured primary neurons was first detected visually with a light microscope, and measured by MTT assay and LDH assay. The validity of monitoring changes in mitochondrial membrane potential (ΔΨm) was measured by JC-1 staining, and Western blot for cytochrome c and truncated Bid (tBid) in purified mitochondria was also performed. In addition, lysosomal integrity was detected by blotting for cathepsin B and tBid in purified lysosomes. Our results showed post-injury P188 treatment moderated the dissipation of ΔΨm in mitochondria, and inhibited VCSD-induced cytochrome c release from mitochondria as well as cathepsin B from lysosomes. Cathepsin B inhibition (CBI) could also increase cell viability, maintain mitochondrial membrane potential, and repress VCSD-induced release of cytochrome c from mitochondria to cytosol. Both P188 and CBI treatment decreased the cytosolic accumulation of tBid in supernatant of purified lysosomes, and the amount of mitochondrial localized tBid. These data indicate injured neurons have undergone mitochondrial and lysosomal membrane permeability damage, and the mechanism can be exploited with pharmacological interventions. P188's neuroprotection appears to involve a relationship between cathepsin B and tBid-mediated mitochondrial initiation of cell death.


Assuntos
Lesões Encefálicas/patologia , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Poloxâmero/farmacologia , Animais , Western Blotting , Lesões Encefálicas/metabolismo , Células Cultivadas , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Permeabilidade , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA