Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 22(12): 4272-80, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18716030

RESUMO

The matrix (M) protein of vesicular stomatitis virus (VSV) plays a key role in inducing cell apoptosis during infection. To investigate whether M protein-mediated apoptosis could be used in cancer therapy, its cDNA was amplified and cloned into eukaryotic expression vector pcDNA3.1(+). The recombinant plasmid or the control empty plasmid pcDNA3.1(+) was mixed with cationic liposome and introduced into various tumor cell lines in vitro, including lung cancer cell LLC, A549, colon cancer cell CT26 and fibrosarcoma cell MethA. Our data showed that the M protein induced remarkable apoptosis of cancer cells in vitro compared with controls. Fifty micrograms of plasmid in a complex with 250 microg cationic liposome was injected intratumorally into mice bearing LLC or MethA tumor model every 3 days for 6 times. It was found that the tumors treated with M protein plasmid grew much more slowly, and the survival of the mice was significantly prolonged compared with the mice treated with the control plasmid. In MethA fibrosarcoma, the tumors treated with M protein plasmid were even completely regressed, and the mice acquired longtime protection against the same tumor cell in rechallenge experiments. Both apoptotic cells and CD8(+) T cells were widely distributed in M protein plasmid-treated tumor tissue. Activated cytotoxic T lymphocytes (CTLs) were further detected by means of (51)Cr release assay in the spleen of the treated mice. These results showed that M protein of VSV can act as both apoptosis inducer and immune response initiator, which may account for its extraordinary antitumor effect and warrant its further development in cancer gene therapy.


Assuntos
Terapia Genética/métodos , Vírus da Estomatite Vesicular Indiana , Proteínas da Matriz Viral/uso terapêutico , Animais , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/terapia , Cricetinae , Humanos , Lipossomos/administração & dosagem , Neoplasias Pulmonares/terapia , Camundongos , Linfócitos T Citotóxicos/fisiologia , Proteínas da Matriz Viral/administração & dosagem
2.
Apoptosis ; 13(10): 1205-14, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18726188

RESUMO

Vesicular stomatitis virus (VSV) matrix (M) protein can directly induce apoptosis by inhibiting host gene expression when it is expressed in the absence of other viral components. Previously, we found that the M protein gene complexed to DOTAP-cholesterol liposome (Lip-MP) can suppress malignant tumor growth in vitro and in vivo; however, little is known regarding the biological effect of Lip-MP combined with radiation. The present study was designed to determine whether Lip-MP could enhance the antitumor activity of radiation. LLC cells treated with a combination of Lip-MP and radiation displayed apparently increased apoptosis compared with those treated with Lip-MP or radiation alone. Mice bearing LLC or Meth A tumors were treated with intratumoral or intravenous injections of Lip-MP and radiation. The combined treatment significantly reduced mean tumor volumes compared with either treatment alone in both tumor models and prolonged the survival time in Meth A tumor models and the intravenous injection group of LLC tumor models. Moreover, the antitumor effects of Lip-MP combined with radiation were greater than their additive effects when compared with the expected effects of the combined treatment in vivo. This study suggests that Lip-MP enhanced the antitumor activity of radiation by increasing the induction of apoptosis.


Assuntos
Apoptose/efeitos da radiação , Raios gama , Terapia Genética , Neoplasias/genética , Neoplasias/radioterapia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ácidos Graxos Monoinsaturados/metabolismo , Lipossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Compostos de Amônio Quaternário/metabolismo , Ensaio Tumoral de Célula-Tronco
3.
Hum Gene Ther ; 22(9): 1061-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21615297

RESUMO

Adenovirus (Ad)-based antiangiogenesis gene therapy is a promising approach for cancer treatment. Downregulation or loss of coxsackievirus and adenovirus receptor (CAR) is often detected in various human cancers, which hampers adenoviral gene therapy approaches. Cationic liposome-complexed adenoviral vectors have been proven useful in CAR-deficient cells to enhance therapeutic gene transfer in vivo. Here, we investigated the antitumor effects of recombinant adenovirus encoding endostatin (Ad-hE) encapsulated in cationic liposome (Ad-hE/Lipo) on CAR-deficient CT26 colon carcinoma murine models. In vitro, Ad-hE/Lipo enhanced adenovirus transfection in CAR-deficient cells (CT26), and endostatin gene expression was measured by both qualitative and quantitative detection. In addition, an antibody neutralizing assay indicated that neutralizing serum inhibited naked adenovirus 5 (Ad5) at rather higher dilution than the complexes of Ad5 and cationic liposomes (Ad5-CL), which demonstrated that Ad5-CL was more capable of protecting Ad5 from neutralization. In vivo, Ad-hE/Lipo treatment in the murine CT26 tumor model by intratumoral injection resulted in marked suppression of tumor growth and prolonged survival time, which was associated with a decreased number of microvessels and increased apoptosis of tumor cells. In conclusion, recombinant endostatin adenovirus encapsulated with cationic liposome effectively inhibited CAR-deficient tumor growth through an antiangiogenic mechanism in murine models without marked toxicity, thus showing a feasible strategy for clinical applications.


Assuntos
Adenocarcinoma/terapia , Adenoviridae/genética , Neoplasias do Colo/terapia , Endostatinas/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Neoplasias do Colo/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Modelos Animais de Doenças , Endostatinas/metabolismo , Feminino , Regulação da Expressão Gênica , Vetores Genéticos/toxicidade , Células HEK293 , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/genética , Receptores Virais/deficiência , Transdução Genética , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
4.
Med Oncol ; 27(4): 1156-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19949901

RESUMO

Colorectal cancer is one of the most common cancers. Survivin is strongly immunogenic in a fraction of colorectal cancer patients. The present study was designed to determine whether full-length mouse Survivin dominant-negative mutant SurvivinT34A has the antitumor activity in a murine colon carcinoma model. The complex of cationic liposome (DOTAP/Chol) to plasmid pORF9-mSurvivin T34A was administered intravenously in a mouse subcutaneous (S. C.) CT 26 tumor model. Apoptotic cells and anti-angiogenesis were evaluated by fluorescent in situ TUNEL assay and by immunohistochemistry with an antibody reactive to CD31, respectively. A 4 h 51Cr release assay was performed to determine Survivin-specific cytotoxicity. The adoptive transfer of CD8+ or CD4+ T-lymphocytes assay was to further explore the roles of immune cell subsets. We demonstrated the complex of cationic liposome (DOTAP/Chol) to plasmid pORF9--mSurvivin T34A when administered intravenously induced an efficient antitumor activity in a S. C. CT26 tumor model in mice. The main mechanism is involved in three aspects: triggering the apoptosis of tumor cells, inhibiting angiogenesis, and inducing Survivin-specific immune response. Our observations may have potential implications for the further exploration of the treatment of human colorectal cancer by intravenous delivery of dominant-negative mutant Survivin T34A.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Terapia Genética , Proteínas Inibidoras de Apoptose/metabolismo , Neovascularização Patológica/prevenção & controle , Proteínas Repressoras/metabolismo , Transferência Adotiva , Alanina/genética , Animais , Apoptose , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Adesão Celular , Movimento Celular , Proliferação de Células , Neoplasias do Colo/imunologia , Feminino , Humanos , Técnicas Imunoenzimáticas , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/imunologia , Injeções Intravenosas , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Survivina , Treonina/genética
5.
Electrophoresis ; 29(18): 3825-33, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18726970

RESUMO

A novel covalent coupling method for coating of capillaries with liposomes has been developed, which includes three steps: (i) epoxy-diol coating, (ii) activation with 2,2,2-trifluoroethanesulfonyl chloride, and (iii) liposome coupling. The coating conditions, such as the reaction time and temperature of liposome coupling, the content of dimyristoylphosphatidylethanolamine in liposomes, were optimized. Vesicles were visualized on the inner silica wall as confirmed by atomic force microscopy. The effectiveness of the coating was demonstrated by investigating the effect of pH of BGE on EOF and separating neutral compounds. The intra- and inter-capillary variations in EOF are 4.02% RSD (n=30) and 6.72% RSD (n=4) respectively, and the coated capillaries can be used to perform analysis at least for one month without any performance deterioration when stored at 4 degrees C. A set of drugs with diverse structures was applied into the developed liposome-coated CE. The normalized capacity factor (K) was introduced to quantitatively evaluate drug-membrane interactions. The relationship between log K and the fraction dose absorbed in humans (Fa%) shows that the liposome-coated CE can be utilized for in vitro prediction of Fa% of drugs that follow the transcellular passive transport route.


Assuntos
Eletroforese Capilar/métodos , Lipossomos/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Força Atômica , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA