Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Macromol Rapid Commun ; 43(18): e2200143, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35396780

RESUMO

Shape-transforming block copolymer (BCP) microparticles have attracted extensive attention due to their promising applications in nanotechnology, biomedicines, interfacial science, and other fields. As their performance is highly associated to their shape and structure, it is very important to realize the precise control of particle shape. In this report, a method is proposed to regulate the shape and structure of polystyrene-b-polydimethoxysiloxane (PS-b-PDMS) microparticles by using positively charged core-crosslinked nanoparticles (CNPs) as a cosurfactant, combining with cationic surfactant cetyltrimethylammonium bromide (CTAB). The electrostatic repulsive interactions between CNPs and CTAB dominate the shape of PS-b-PDMS particles. Upon introducing NaCl, the electrostatic repulsion is reduced, resulting in the reshape of PS-b-PDMS particles from striped Janus ellipsoids to onion-like microspheres at a critical concentration of NaCl (cNaCl ). Interestingly, it is found that the critical cNaCl first increases then reaches a plateau, with the increase in the crosslinking degree of the CNPs. The work provides a simple strategy to tailor the morphology of BCPs by manipulating the electrostatic interaction.


Assuntos
Nanopartículas , Poliestirenos , Cetrimônio , Polímeros/química , Poliestirenos/química , Cloreto de Sódio , Tensoativos
2.
Langmuir ; 37(44): 13099-13106, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34705469

RESUMO

Multicompartment micelles (MCMs) attracted much attention since they have subdivided domains that could be employed to encapsulate and transport diverse compounds simultaneously. Usually, preparation of MCMs relied on precise synthesis of block copolymers (BCPs) and elegant control of assembly kinetics, making it difficult to successively produce MCMs. Herein, we report a facile yet effective method for preparing MCMs by adjusting the hydrodynamics in microfluidic channels. It was found that well-defined MCMs were formed through hydrodynamics-dependent secondary assembly in microfluidic chips. By adjusting the flow diffusion process by varying the flow rate ratio and total flow rate, both the internal structure and size of MCMs could be effectively changed. A product diagram of micellar morphologies associated to the initial polymer concentration and flow rate ratio of water/BCPs solution was constructed. More interestingly, quantum dots (QDs) could be selectively loaded into different domains of the MCMs. Consequently, the Förster resonance energy transfer among QDs could be effectively suppressed. Thus, the emission spectrum of MCMs/QDs hybrid particles could be easily tuned by changing the ratio of QDs, showing great potential application in photonics and sensors.


Assuntos
Micelas , Pontos Quânticos , Hidrodinâmica , Microfluídica , Polímeros
3.
Macromol Rapid Commun ; 39(22): e1800397, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30091837

RESUMO

Mixed micelles formed by co-assembly of pairs of block copolymers (BCPs) can develop novel morphologies and generate useful properties not accessible from homomicelles. For micelles consisting of two different polymers in the corona, identifying the location of the corona chains is a critical part of morphology characterization. Coronal segregation in mixed micelle is often characterized by transmission electron microscopy in combination with selective staining of individual polymers. In this study, Karstedt's catalyst is used for selective Pt(0)-olefin coordination staining of polyisoprene (PI) and poly(methylvinylsiloxane) (PMVS) corona chains in the presence of poly(dimethylsiloxane) (PDMS) corona chains in cylindrical mixed micelles with a crystalline poly(ferrocenyldimethylsilane) (PFS) core. Previous experiments using OsO4 as a stain did not enable visualization of nanoscale coronal segregation in mixed micelles obtained from co-assembly of PFS-b-PI and PFS-b-PDMS, as well as PFS-b-PMVS and PFS-b-PDMS.


Assuntos
Alcenos/química , Nanopartículas/química , Compostos Organoplatínicos/síntese química , Polímeros/síntese química , Micelas , Estrutura Molecular , Compostos Organoplatínicos/química , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
4.
Langmuir ; 31(45): 12354-61, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26492108

RESUMO

In this study, we report the controllable structural transformation of block copolymer/homopolymer binary blends in cylindrical nanopores. Polystyrene-b-poly(4-vinylpyridine)/homopolystyrene (SVP/hPS) nanorods (NRs) can be fabricated by pouring the polymers into an anodic aluminum oxide (AAO) channel and isolated by selective removal of the AAO membrane. In this two-dimensional (2D) confinement, SVP self-assembles into NRs with concentric lamellar structure, and the internal structure can be tailored with the addition of hPS. We show that the weight fraction and molecular weight of hPS and the diameter of the channels can significantly affect the internal structure of the NRs. Moreover, mesoporous materials with tunable pore shape, size, and packing style can be prepared by selective solvent swelling of the structured NRs. In addition, these NRs can transform into spherical structures through solvent-absorption annealing, triggering the conversion from 2D to 3D confinement. More importantly, the transformation dynamics can be tuned by varying the preference property of surfactant to the polymers. It is proven that the shape and internal structure of the polymer particles are dominated by the interfacial interactions governed by the surfactants.


Assuntos
Óxido de Alumínio/química , Nanotubos , Poliestirenos/química , Polivinil/química , Piridinas/química , Cetrimônio , Compostos de Cetrimônio/química , Microscopia Eletrônica de Transmissão , Peso Molecular , Nanoporos/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Álcool de Polivinil/química , Porosidade , Propriedades de Superfície , Tensoativos/química
5.
Langmuir ; 31(48): 13094-100, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26548328

RESUMO

Here we present the generation of uniform microparticles with tunable diameters from azobenzene-based homopolymer by combining the microfluidics technique and emulsion-solvent evaporation route. In addition, the photoinduced deformation behavior of these microspheres, irradiated by a linearly polarized beam with different irradiation time and direction, are systemically studied. The deformation process through real time optical microscope observation can be investigated, benefiting from the uniform and microscaled size of the polymer particles. These results indicate that the deformation degree characterized by relative variation of the long axial for the particles can be controlled by the irradiation time. Moreover, elongated particles with tunable aspect ratio or tilted shape can be generated by manipulating the irradiation direction and/or time. Interestingly, the shape transformation kinetics displays a significant dependence on initial size of the polymer particle. In addition, the shape transformation of the polymer particle can lead to the variation of the orientation and distribution of the encapsulated anisotropic gold nanorods.


Assuntos
Compostos Azo/química , Microesferas , Polímeros/química
6.
Curr Drug Deliv ; 20(3): 306-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35546770

RESUMO

BACKGROUND: Multidrug-resistant Mycobacterium tuberculosis (MDR-TB) is a major cause of death amongst tuberculosis patients. Nanomedicine avoids some limitations of conventional drug treatment and increases therapeutic efficacy against bacterial infections. However, the effect of anti-TB drug nanoparticle (NP) compounds in anti-TB regimens against MDR-TB remains unclear. OBJECTIVE: The objective of this article is to prepare levofloxacin, linezolid, ethambutol, prothionamide, and pyrazinamide encapsulated NPs and to evaluate their therapeutic efficacy against MDR-TB in macrophages. METHODS: Drug-loaded PLGA NPs were prepared by the multiple emulsion method. The colocalization, intracellular release, and anti-TB activity of these NPs were investigated on cultured macrophages. The immune phenotype of the macrophages, including their mitochondrial membrane potential, reactive oxygen species (ROS), and nitric oxide (NO) production, was evaluated following treatment with NPs or free drug compounds. RESULTS: All drug-loaded PLGA NPs were spherical in shape, 150 to 210 nm in size, and showed 14.22% to 43.51% encapsulation efficiencies and long-duration release. Drug-loaded PLGA NPs were mainly distributed in the cytoplasm of macrophages, showed high cellular compatibility, and maintained their concentration for at least 13 days. Compared with the free drug compounds, the number of colonies after exposure to PLGA NP compounds was significantly less. The enhanced antibacterial activity of the NP compounds may be due to the enhanced levels of ROS and NO and the increased early apoptosis stress within M. tuberculosis-infected macrophages additionally. CONCLUSION: The application of PLGA NP compounds not only enhances drug efficacy but also induces innate bactericidal events in macrophages, confirming this as a promising approach for MDR-TB therapy.


Assuntos
Mycobacterium tuberculosis , Nanopartículas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Protionamida/farmacologia , Protionamida/uso terapêutico , Etambutol/farmacologia , Etambutol/uso terapêutico , Levofloxacino/farmacologia , Linezolida/farmacologia , Linezolida/uso terapêutico , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos
7.
Nanoscale ; 12(28): 14957-14975, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32648868

RESUMO

Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.


Assuntos
Nanopartículas , Polímeros , Sistemas de Liberação de Medicamentos , Compostos Férricos , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo
8.
ACS Appl Mater Interfaces ; 11(45): 42734-42743, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31622077

RESUMO

In this report, we present a facile approach to produce biodegradable polymeric microparticles with uniform sizes and controllable morphologies by blending hydrophobic poly(d, l-lactic-co-glycolide) (PLGA) and amphiphilic poly(d, l-lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG) in a microfluidic chip. Microparticles with tentacular, hollow hemispherical, and Janus structures were obtained after complete evaporation of the organic solvent by manipulating the interfacial behavior of emulsion droplets and the phase separation behavior inside the droplets. The number and length of the tentacles on the surface of tentacular microparticles could be tailored by varying the initial concentration and blending ratios of the polymers. The organic solvent played an important role in controlling the morphologies of microparticles. For example, blending PLA16k-b-PEG5k with PLGA100k in dichloromethane resulted in tentacular microparticles, whereas hollow hemispherical microparticles were obtained in trichloromethane. Moreover, these microparticles with controllable shapes and surface textures have significant influence on the immune response of dendritic cells (DCs), showing a morphology-dependent enhancement of DC maturation.


Assuntos
Células Dendríticas/imunologia , Polímeros/farmacologia , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Tamanho da Partícula , Polímeros/síntese química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA