Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Microb Pathog ; 149: 104479, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32920149

RESUMO

Liver disease has been reported to associate with oral microbiota. This study aimed to identify the salivary microbial structure in liver disease patients and determine whether the disease progression influence the bacterial composition. 16S rDNA high-throughput sequencing and bioinformatic analysis were used to examine oral bacterial diversity in the different status of hepatitis patients including 6 patients with Hepatitis B (Y), 6 patients with Hepatitis B Cirrhosis (YY) and 6 patients with liver cancer (C), and 6 healthy controls (T). Phylogenetic analysis revealed that the genera of Streptococcus, Prevotella, Actinomyces, Veillonella and Neisseria are predominant genus in the saliva of Y, YY, C patients and T group. Lautropia, Abiotrophia and Veillonella were enriched in Y patients, while Treponema, Selenomonas and Oribacterium were also existed in YY patients. Haemophilus, Porphyromonas and Filifactor had high abundance in C patients. The genera of Moryella, Leptotrichia, Lactobacillus, Dialister, Serratia, Enterococcus and Actinobacillus were decreased in all patient samples compared with healthy control samples which may be used for treatment of liver disease. Diversity analyses showed decreased diversity of salivary bacterial communities was discovered in the progress of the liver disease. These findings identified the oral microbiota dysbiosis in liver disease, which may providing available information and possible diagnostic biomarkers for liver patients.


Assuntos
Neoplasias Hepáticas , Microbiota , Humanos , Filogenia , RNA Ribossômico 16S/genética , Saliva
2.
BMC Oral Health ; 16(1): 101, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27659310

RESUMO

BACKGROUND: Streptococcus mutans forms biofilms as a resistance mechanism against antimicrobial agents in the human oral cavity. We recently showed that human cathelicidin LL-37 exhibits inhibitory effects on biofilm formation of S. mutans through interaction with lipoteichoic acid (LTA), but without antibacterial or biofilm dispersal abilities. (-)-Epigallocatechin gallate (EGCG) is the most abundant constituent of tea catechins that has the greatest anti-infective potential to inhibit the growth of various microorganisms and biofilm formation. Therefore, in this study, we evaluated whether LL-37 interacts with EGCG to enhance the antibiofilm effect of EGCG on S. mutans biofilm formation. METHODS: Clinical S. mutans strains (n = 10) isolated from children's saliva were tested in a biofilm formation assay. The antibiofilm effect of EGCG with and without LL-37 was analyzed by the minimum biofilm eradication concentration assay and confirmed using field emission-scanning electron microscopy. In addition, the interaction among EGCG, LL-37, and LTA of S. mutans was determined using quartz crystal microbalance analysis. RESULTS: EGCG killed 100 % of planktonic S. mutans within 5 h, inhibited biofilm formation within 24 h, and reduced bacteria cells in preformed biofilms within 3 h at a concentration of 0.2 mg/mL. However, EGCG did not appear to interact with LTA. LL-37 effectively enhanced the bactericidal activity of EGCG against biofilm formation and preformed biofilms as determined by quantitative crystal violet staining and field emission-scanning electron microscopy. In addition, quartz crystal microbalance analysis revealed that LL-37 interacted with EGCG and promoted binding between EGCG and LTA of S. mutans. CONCLUSIONS: We show that LL-37 enhances the antibiofilm effect of EGCG on S. mutans. This finding provides new knowledge for dental treatment by using LL-37 as a potential antibiofilm compound.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Streptococcus mutans , Catequina/análogos & derivados , Catequina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Catelicidinas
3.
Virol J ; 12: 56, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25889836

RESUMO

BACKGROUND: Enterovirus 71 (EV71) is one of the major etiological pathogens of hand, foot and mouth disease (HFMD) and can cause severe cerebral and pulmonary complications and even fatality. MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing various physiological and pathological processes. Increasing evidence suggests that miRNAs act as key effector molecules in the complicated pathogen-host interactions. However, the roles of miRNAs in EV71 infection and pathogenesis are not well understood. METHODS: To identify special miRNAs involved in EV71 infection, a microarray assay was performed to study the expression pattern of miRNAs in EV71-infected human rhabdomyosarcoma cells (RD cells) and uninfected RD cells. We further predicted the putative target genes for the dysregulated miRNAs using the online bioinformatic algorithms (TargetScan, miRanda and PicTar) and carried out functional annotation including GO enrichment and KEGG pathway analysis for miRNA predicted targets. Then, the results of microarray were further confirmed by quantitative RT-PCR. RESULTS: Totally, 45 differentially expressed miRNAs ware identified by microarray, among which 36 miRNAs were up-regulated and 9 were down-regulated. 7166 predicted target genes for the dysregulated miRNAs were revealed by using TargetScan in conjunction with miRanda and PicTar. The GO annotation suggested that predicted targets of miRNAs were enriched into the category of signal transduction, regulation of transcription, metabolic process, protein phosphorylation, apoptotic process and immune response. KEGG pathway analysis suggested that these predicted target genes were involved in many important pathways, mainly including endocytosis and focal adhesion, MAPK signaling pathway, hypertrophic cardiomyopathy, melanogenesis and ErbB signaling pathway. The expression levels of 8 most differentially up-regulated miRNAs and 3 most differentially down-regulated miRNAs were confirmed by qRT-PCR. The expressions of hsa-miR-4530, hsa-miR-4492, hsa-miR-6125, hsa-miR-494-3p, hsa-miR-638, hsa-miR-6743-5p, hsa-miR-4459 and hsa-miR-4443 detected by qRT-PCR were consistent with the microarray data. CONCLUSION: These results might extend our understanding to the regulatory mechanism of miRNAs underlying the pathogenesis of EV71 infection, thus strengthening the preventative and therapeutic strategies of HFMD caused by EV71.


Assuntos
Enterovirus Humano A/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , MicroRNAs/biossíntese , Linhagem Celular Tumoral , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real
4.
Can J Microbiol ; 59(4): 252-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23586749

RESUMO

Listeria monocytogenes is resistant to fosfomycin in vitro but is susceptible in vivo due to increased expression of positive regulator factor A (PrfA) and its dependent factor, hexose phosphate transporter (Hpt), upon infection of host cells. Amberlite, a polymeric adsorbent resin, could induce PrfA-dependent gene expression and thus, in theory, improve the sensitivity of L. monocytogenes to fosfomycin in vitro. In the current study, an improved susceptibility test based on Amberlite was developed using reference strains. Thirty-five clinical isolates were further examined to verify those preliminary results. Briefly, Amberlite increased in vitro fosfomycin sensitivity of all strains. Optimal Amberlite concentrations, as evaluated through the expression of phospholipase B (PlcB) and Hpt, were 10% and 15% (w/v) in agar media and 3% (w/v) in broth media. Mueller-Hinton (MH) medium, tryptone soya (TS) medium, and brain heart infusion (BHI) medium were used to verify the results in the control strains using agar dilution and broth micro- and macro-dilution methods. Better listerial growth was shown in TS and BHI than in MH. Both broth dilution methods yielded lower minimal inhibitory concentration (MIC) of fosfomycin than the agar dilution method. The MIC of fosfomycin for 35 clinical isolates was 2-32 µg/mL, suggesting improved susceptibility. In conclusion, in vitro sensitivity of L. monocytogenes to fosfomycin was substantially improved in the presence of 3% Amberlite-supplemented TSB or BHIB and the broth microdilution method. This improved method revealed the potential antilisterial activity of fosfomycin in vitro and could facilitate the therapy of listeriosis using fosfomycin.


Assuntos
Antibacterianos/farmacologia , Fosfomicina/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Resinas Sintéticas/química , Meios de Cultura , Farmacorresistência Bacteriana , Humanos , Listeriose/tratamento farmacológico , Reação em Cadeia da Polimerase em Tempo Real
5.
Sci Rep ; 10(1): 989, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969644

RESUMO

Hand, foot, and mouth disease (HFMD) is a common childhood illness caused by enteroviruses. We analyzed the pathogenic characteristics of HFMD in Shaanxi province, China, during 2010-2016. Clinical samples were collected from HFMD cases. Real-time PCR and RT-PCR were used to identify the enterovirus(EVs) serotypes. Viral RNA sequences were amplified using RT-PCR and compared by phylogenetic analysis. Descriptive epidemiological methods were used to analyze. A total of 16,832 HFMD positive cases were confirmed in the laboratory. EV-A71 and CV-A16 were the main pathogens in 2010. EV-A71 was the dominant pathogen in the periods of 2011 to 2012 and 2014, 2016. In 2013 and 2015, other EVs increased greatly, in which CV-A6 was the predominant pathogen. EV-A71 was more frequently detected in deaths and severe cases. Phylogenetic analysis revealed that EV-A71 belonged to the C4a evolution branch of C4 sub-genotype and CV-A16 belonged to the B1a or B1b evolution branch of B1 sub-genotype, whereas CV-A6 strains were assigned to D2 or D3 sub-genotype. The pathogen spectrum of HFMD has changed in 7 years, and the major serotypes EV-A71, CV- A16 and CV- A6 alternated or co-circulated. Long-term surveillance and research of EVs should be strengthened for the prevention and control of HFMD.


Assuntos
Enterovirus/isolamento & purificação , Doença de Mão, Pé e Boca/virologia , Criança , Pré-Escolar , China/epidemiologia , Feminino , Genótipo , Doença de Mão, Pé e Boca/epidemiologia , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , RNA Viral , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA