Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(48): 17912-17919, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37972240

RESUMO

The organic photoelectrochemical transistor (OPECT) has been proven to be a promising platform to study the rich light-matter-bio interplay toward advanced biomolecular detection, yet current OPECT is highly restrained to its intrinsic electronic amplification. Herein, this work first combines chemical amplification with electronic amplification in OPECT for dual-amplified bioanalytics with high current gain, which is exemplified by human immunoglobulin G (HIgG)-dependent sandwich immunorecognition and subsequent alkaline phosphatase (ALP)-mediated chemical redox cycling (CRC) on a metal-organic framework (MOF)-derived BiVO4/WO3 gate. The target-dependent redox cycling of ascorbic acid (AA) acting as an effective electron donor could lead to an amplified modulation against the polymer channel, as indicated by the channel current. The as-developed bioanalysis could achieve sensitive HIgG detection with a good analytical performance. This work features the dual chemical and electronic amplification for OPECT bioanalysis and is expected to stimulate further interest in the design of CRC-assisted OPECT bioassays.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Humanos , Técnicas Eletroquímicas , Oxirredução , Polímeros , Limite de Detecção
2.
Biosens Bioelectron ; 257: 116346, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38688230

RESUMO

The field of organic photoelectrochemical transistor (OPECT) is newly emerged, with increasing efforts attempting to utilize its properties in biological sensing. Advanced materials with new physicochemical properties have proven important to this end. Herein, we report a metal-organic polymers-gated OPECT biosensing exemplified by CuⅠ-arylacetylide polymers (CuAs)-modulated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel. Both the photoelectrochemical properties and gating capability of CuAs are explored and optimized for high-efficacy photogating. Morever, based on its inherent structure, the specific reaction between CuAs and sulfur ions (S2-) is revealed and S2--mediated microRNA-21 detection is realized by linking with nucleic acid amplification and alkaline phosphatase catalytic chemistry. This work introduces metal-organic polymers as gating materials for OPECT biosensing.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , MicroRNAs , Polímeros , Poliestirenos , Transistores Eletrônicos , Técnicas Biossensoriais/instrumentação , Polímeros/química , Poliestirenos/química , MicroRNAs/análise , MicroRNAs/sangue , Cobre/química , Humanos , Fosfatase Alcalina/química , Limite de Detecção , Tiofenos
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(1): 142-6, 2013 Jan.
Artigo em Zh | MEDLINE | ID: mdl-23586243

RESUMO

A new borate polymer PAA-ran-PAAPBA that can specifically adsorb glucose was introduced in the glucose measurement based on surface plasmon resonance, and the high-precision specific detection of glucose concentration was realized. Six layers and twelve layers of borate polymer were respectively bound onto the SPR sensors through the layer-by-layer self-assembly binding method, and the effect of different layers of borate polymer on the glucose surface plasmon resonance measurement was studied. The experiment was conducted in the concentration range of 1-10 mg x dL(-1) (interval delta = 1 mg x dL(-1)), 10-100 mg x dL(-1) (interval delta = 10 mg x dL(-1)), and 100-1 000 mg x dL(-1) (interval delta = 100 mg x dL(-1)), experiment data was fitted by quadric curve and the fitting degree of refractive index difference deltaRU and glucose concentration was obtained. Results showed that the 12-layer-polymer sensor was better than the 6-layer-polymer sensor in the first two smaller ranges, and the measuring result was not significantly affected by layers in the third range, indicating that for the small concentrations increasing polymer layer can dramatically improve the measurement.


Assuntos
Resinas Acrílicas/química , Glicemia/análise , Ácidos Borônicos/química , Glucose/análise , Ressonância de Plasmônio de Superfície/métodos , Adsorção , Boratos/química , Glucose/química , Humanos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA