Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 124: 130-138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182123

RESUMO

Soluble microbial products (SMPs), dissolved organic matter excreted by activated sludge, can interact with antibiotics in wastewater and natural water bodies. Interactions between SMPs and antibiotics can influence antibiotic migration, transformation, and toxicity but the mechanisms involved in such interactions are not fully understood. In this study, integrated spectroscopy approaches were used to investigate the mechanisms involved in interactions between SMPs and a representative antibiotic, trimethoprim (TMP), which has a low biodegradation rate and has been detected in wastewater. The results of liquid chromatography-organic carbon detection-organic nitrogen detection indicated that the SMPs used in the study contained 15% biopolymers and 28% humic-like substances (based on the total dissolved organic carbon concentration) so would have contained sites that could interact with TMP. A linear relationship of fluorescent intensities of tryptophan protein-like substances in SMP was observed (R2>0.99), indicating that the fluorescence enhancement between SMP and TMP occurred. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy indicated that carboxyl, carbonyl, and hydroxyl groups were the main functional groups involved in the interactions. The electrostatic and π-π interactions were discovered by the UV-vis spectra and 1H nuclear magnetic resonance spectra. Structural representations of the interactions between representative SMP subcomponents and TMP were calculated using density functional theory, and the results confirmed the conclusions drawn from the 1H nuclear magnetic resonance spectra. The results help characterize SMP-TMP complexes and will help understand antibiotic transformations in wastewater treatment plants and aquatic environments.


Assuntos
Esgotos , Purificação da Água , Antibacterianos , Biopolímeros , Reatores Biológicos , Carbono , Substâncias Húmicas/análise , Nitrogênio , Esgotos/química , Trimetoprima , Triptofano , Águas Residuárias/química , Água , Purificação da Água/métodos
2.
Sci Total Environ ; 912: 168313, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007128

RESUMO

Wastewater treatment plants (WWTPs) pose a potential threat to the environment because of the accumulation of antibiotic resistance genes (ARGs) and microplastics (MPs). However, the interactions between ARGs and MPs, which have both indirect and direct effects on ARG dissemination in WWTPs, remain unclear. In this study, spatiotemporal variations in different types of MPs, ten ARGs (sul1, sul2, tetA, tetO, tetM, tetX, tetW, qnrS, ermB, and ermC), class 1 integron integrase (intI1) and transposon Tn916/1545 in three typical WWTPs were characterized. Sul1, tetO, and sul2 were the predominant ARGs in the targeted WWTPs, whereas the intI1 and transposon Tn916/1545 were positively correlated with most of the targeted ARGs. Saccharimonadales (4.15 %), Trichococcus (2.60 %), Nitrospira (1.96 %), Candidatus amarolinea (1.79 %), and SC-I-84 (belonging to phylum Proteobacteria) (1.78 %) were the dominant genera. Network and redundancy analyses showed that Trichococcus, Faecalibacterium, Arcobacter, and Prevotella copri were potential hosts of ARGs, whereas Candidatus campbellbacteria and Candidatus kaiserbacteria were negatively correlated with ARGs. The potential hosts of ARGs had a strong positive correlation with polyethylene terephthalate, silicone resin, and fluor rubber and a negative correlation with polyurethane. Candidatus campbellbacteria and Candidatus kaiserbacteria were positively correlated with polyurethane, whereas potential hosts of ARGs were positively correlated with polypropylene and fluor rubber. Structural equation modeling highlighted that intI1, transposon Tn916/1545 and microbial communities, particularly microbial diversity, dominated the dissemination of ARGs, whereas MPs had a significant positive correlation with microbial abundance. Our study deepens the understanding of the relationships between ARGs and MPs in WWTPs, which will be helpful in designing strategies for inhibiting ARG hosts in WWTPs.


Assuntos
Águas Residuárias , Purificação da Água , Genes Bacterianos , Microplásticos , Plásticos , Antibacterianos , Poliuretanos , Borracha , Resistência Microbiana a Medicamentos/genética , Interações Microbianas
3.
Sci Total Environ ; 843: 156928, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35753462

RESUMO

The co-impacts of microplastics (MPs) and organic pollutants on activated sludge have attracted extensive attention. In this study, microplastic polyamide (PA) and sertraline (SER) were respectively or simultaneously added to sequencing batch reactors (SBRs), and the impacts of these pollutants on activated sludge were investigated. The results showed that NH4+-N and TN removal efficiencies significantly decreased with the simultaneous adding of the two pollutants. The coexistence of PA and SER could observably decrease the settling ability of activated sludge, and more proteins and polysaccharides were generated to reduce the combined toxicity. The microbial diversity, especially the denitrification microorganism, was restrained and the metabolic function and the key enzyme involved in nitrogen metabolism pathways were observably decreased, due to the combined toxicity of this two pollutants. Furthermore, the effective SER interception by PA in SBR could induce the SER enrichment in activated sludge and enhance the biotoxicity toward sludge microorganisms.


Assuntos
Poluentes Ambientais , Microbiota , Reatores Biológicos , Desnitrificação , Microplásticos , Nitrogênio/metabolismo , Nylons , Plásticos , Sertralina , Esgotos/química , Eliminação de Resíduos Líquidos
4.
Water Res ; 223: 118975, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987034

RESUMO

Microplastics as emerging pollutants have been heavily accumulated in the waste activated sludge (WAS) during biological wastewater treatment, which showed significantly diverse impacts on the subsequent anaerobic sludge digestion for methane production. However, a robust modeling approach for predicting and unveiling the complex effects of accumulated microplastics within WAS on methane production is still missing. In this study, four automated machine learning (AutoML) approach was applied to model the effects of microplastics on anaerobic digestion processes, and integrated explainable analysis was explored to reveal the relationships between key variables (e.g., concentration, type, and size of microplastics) and methane production. The results showed that the gradient boosting machine had better prediction performance (mean squared error (MSE) = 17.0) than common neural networks models (MSE = 58.0), demonstrating that the AutoML algorithms succeeded in predicting the methane production and could select the best machine learning model without human intervention. Explainable analysis results indicated that the variable of microplastic types was more important than the variable of microplastic diameter and concentration. The existence of polystyrene was associated with higher methane production, whereas increasing microplastic diameter and concentration both inhibited methane production. This work also provided a novel modeling approach for comprehensively understanding the complex effects of microplastics on methane production, which revealed the dependence relationships between methane production and key variables and may be served as a reference for optimizing operational adjustments in anaerobic digestion processes.


Assuntos
Poluentes Ambientais , Microplásticos , Anaerobiose , Reatores Biológicos , Humanos , Aprendizado de Máquina , Metano , Plásticos , Poliestirenos , Esgotos , Eliminação de Resíduos Líquidos/métodos
5.
J Hazard Mater ; 384: 121311, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585278

RESUMO

Metabolic uncouplers are widely used for reducing excess sludge in biological wastewater treatment systems. However, the formation of microbial products, such as extracellular polymeric substances, polyhydroxyalkanoate and soluble microbial products by activated sludge in the presence of metabolic uncouplers remains unrevealed. In this study, the impacts of a metabolic uncoupler o-chlorophenol (oCP) on the reduction of activated sludge yield and formation of microbial products in laboratory-scale sequencing batch reactors (SBRs) were evaluated for a long-term operation. The results show the average reduction of sludge yield in the four reactors was 17.40%, 25.80%, 33.02% and 39.50%, respectively, when dosing 5, 10, 15, and 20 mg/L oCP. The oCP addition slightly reduced the pollutant removal efficiency and decreased the formation of soluble microbial products in the SBRs, but stimulated the productions of extracellular polymeric substances and polyhydroxyalkanoate in activated sludge. Furthermore, the significant reduction of electronic transport system activity occurred after the oCP addition. Microbial community analysis of the activated sludge indicates dosing oCP resulted in a decrease of sludge richness and diversity in the SBRs. Hopefully, this study would provide useful information for reducing sludge yield in biological wastewater treatment systems and behaviors of activated sludge in the presence of uncouplers.


Assuntos
Clorofenóis/farmacologia , Esgotos/microbiologia , Desacopladores/farmacologia , Águas Residuárias/microbiologia , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Polímeros/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA