Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Nanobiotechnology ; 18(1): 80, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448273

RESUMO

BACKGROUND: Psoriasis is a chronic immune-mediated inflammatory skin disease without effective treatment. The utilization of all trans-retinoic acid (TRA) and betamethasone (BT) for the treatment of psoriasis is still facing difficulties, due to their relatively poor stability, limited skin permeation, and systemic side effects. Flexible liposomes are excellent in deeper skin permeation and reducing the side effects of drugs, which is promising for effective treatment of skin disorders. This work aimed to establish dual-loaded flexible liposomal gel for enhanced therapeutic efficiency of psoriasis based on TRA and BT. RESULTS: Flexible liposomes co-loaded with TRA and BT were successfully prepared in our study. The characterization examination revealed that flexible liposomes featured nano-sized particles (around 70 nm), high drug encapsulation efficiency (> 98%) and sustained drug release behaviors. Flexible liposomes remarkably increased the drug skin permeation and retention as compared with free drugs. Results on HaCaT cells suggested that flexible liposomes were nontoxic, and its cellular uptake has a time-dependent manner. In vivo studies suggested the topical application of TRA and BT dual-loaded liposomal gel had the best ability to reduce the thickness of epidermal and the level of cytokines (TNF-α and IL-6), largely alleviating the symptoms of psoriasis. CONCLUSIONS: Flexible liposomal gel dual-loaded with TRA and BT exerted a synergistic effect, which is a promising topical therapeutic for the treatment of psoriasis.


Assuntos
Betametasona , Fármacos Dermatológicos , Lipossomos , Psoríase , Tretinoína , Animais , Betametasona/química , Betametasona/farmacocinética , Betametasona/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/toxicidade , Modelos Animais de Doenças , Géis , Células HaCaT , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Lipossomos/toxicidade , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Maleabilidade , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Ratos , Ratos Sprague-Dawley , Tretinoína/química , Tretinoína/farmacocinética , Tretinoína/farmacologia
2.
Langmuir ; 31(21): 5851-8, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25966974

RESUMO

Zwitterionic materials have received great attention because of the non-fouling property. As a result of the electric neutrality of zwitterionic polymers, their layer-by-layer (LBL) assembly is generally conducted under specific conditions, such as very low pH values or ionic strength. The formed multilayers are unstable at high pH or in a high ionic strength environment. Therefore, the formation of highly stable multilayers of zwitterionic polymers via the LBL assembly process is still challenging. Here, we report the LBL assembly of poly(sulfobetaine methacrylate) (PSBMA) with a polyphenol, tannic acid (TA), for protein-resistant surfaces. The assembly process was monitored by a quartz crystal microbalance (QCM) and variable-angle spectroscopic ellipsometry (VASE), which confirms the formation of thin multilayer films. We found that the (TA/PSBMA)n multilayers are stable over a wide pH range of 4-10 and in saline, such as 1 M NaCl or urea solution. The surface morphology and chemical composition were characterized by specular reflectance Fourier transform infrared spectroscopy (FTIR/SR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Furthermore, (TA/PSBMA)n multilayers show high hydrophilicity, with a water contact angle lower than 15°. A QCM was used to record the dynamic protein adsorption process. Adsorption amounts of bovine serum albumin (BSA), lysozyme (Lys), and hemoglobin (Hgb) on (TA/PSBMA)20 multilayers decreased to 0.42, 52.9, and 37.9 ng/cm(2) from 328, 357, and 509 ng/cm(2) on a bare gold chip surface, respectively. In addition, the protein-resistance property depends upon the outmost layer. This work provides new insights into the LBL assembly of zwitterionic polymers.


Assuntos
Metacrilatos/química , Taninos/química , Adsorção , Materiais Biocompatíveis/química , Hemoglobinas/química , Microscopia de Força Atômica , Muramidase/química , Espectroscopia Fotoeletrônica , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
3.
ACS Nano ; 15(11): 17361-17374, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34662120

RESUMO

Extremely limited drug retention and depigmentation represent the greatest barriers against vitiligo treatment advancement. Here, inspired by biological melanosomes, the primary melanin transporter, we developed biomimetic melanosomes to combat reactive oxygen species (ROS)-mediated melanocyte damage and depigmentation. Briefly, methylprednisolone (MPS) and melanin-mimicking polydopamine (PDA) were encapsulated inside lysine-proline-valine (KPV)-modified deformable liposomes (KPV-Lipos). Owing to their phospholipid bilayer flexibility and the specific affinity for melanocortin 1 receptor (MC1R), KPV-Lipos exhibited 1.43-fold greater skin deposition than traditional liposomes. The binding of KPV and its receptor also contributed to activating the cAMP-tyrosinase (TYR) signaling pathway, improving the endogenous melanin content. In addition, PDA mimicked melanosomes as it effectively increased the exogenous melanin content and scavenged ROS. Meanwhile, MPS inhibited inflammatory cytokine secretion, limiting the depigmented area. Ultimately, the biomimetic melanosomes affected the skin color of mice with H2O2-induced vitiligo. These melanosomes show potential as a universal platform for the self-supply of melanin by self-driven melanin synthesis with exogenous supplementation. Furthermore, this study offers ideas for the production of artificial packed melanosome substitutes for melanocyte-related diseases.


Assuntos
Melanossomas , Vitiligo , Camundongos , Animais , Vitiligo/tratamento farmacológico , Vitiligo/metabolismo , Melaninas , Peróxido de Hidrogênio/metabolismo , Biomimética , Lipossomos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Melanócitos/metabolismo , Pigmentação
4.
Int J Nanomedicine ; 15: 3267-3279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32440123

RESUMO

Vitiligo is a depigmentation disease that seriously affects the physical health, mental health and quality of life of a patient. Therapeutic aim at control immunoreaction by relieving oxidative stress. Unfortunately, the cuticle barrier function and lack of specific accumulation lead to unsatisfactory therapeutic outcomes and side effects. The introduction and innovation of nanotechnology offers inspiration and clues for the development of new strategies to treat vitiligo. However, not many studies have been done to interrogate how nanotechnology can be used for vitiligo treatment. In this review, we summarize and analyze recent studies involving nano-drug delivery systems for the treatment of vitiligo, with a special emphasis on liposomes, niosomes, nanohydrogel and nanoparticles. These studies made significant progress by either increasing drug loading efficiency or enhancing penetration. Based on these studies, there are three proposed principles for topical nano-drug delivery systems treatment of vitiligo including the promotion of transdermal penetration, enhancement of drug retention and facilitation of melanin regeneration. The presentation of these ideas may provide inspirations for the future development of topical drug delivery systems that will conquer vitiligo.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Vitiligo/tratamento farmacológico , Administração Tópica , Animais , Humanos , Lipossomos , Melaninas/metabolismo
5.
Biomater Sci ; 7(6): 2372-2382, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30916681

RESUMO

An ointment containing retinoic acid deformable liposomes (TRA DLs) and epidermal growth factor cationic deformable liposomes (EGF CDLs) was prepared for the treatment of deep partial-thickness burns. The characterization tests confirmed both liposomes featured small particle sizes, high drug entrapment efficiencies and sustained drug release behavior. Compared with the free drug, TRA DLs and EGF CDLs exhibited superior skin permeation and remarkably increased drug deposition by 2.9 and 18.8 folds, respectively. Results on HaCaT cells indicated the combined application of two liposomes exerted a synergistic effect and prominently promoted cell proliferation and migration. Application of the dual liposomal ointment on a deep partial-thickness burn model stimulated wound closure (p < 0.001), promoted skin appendage formation and increased collagen production, thus improving healing quality. Finally, it was demonstrated that TRA significantly up-regulated the expression of EGFR and HB-EGF to enhance the therapeutic effect of EGF. Therefore, the dual liposomal ointment is a promising topical therapeutic for burn treatment.


Assuntos
Queimaduras/fisiopatologia , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/farmacologia , Fenômenos Mecânicos , Tretinoína/administração & dosagem , Tretinoína/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/toxicidade , Humanos , Lipossomos , Permeabilidade , Ratos , Pele/efeitos dos fármacos , Pele/metabolismo , Tretinoína/metabolismo , Tretinoína/toxicidade
6.
Biomaterials ; 217: 119326, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288173

RESUMO

Spinal cord injury (SCI) leads to immediate disruption of neuronal membranes and loss of neurons, followed by extensive secondary injury process. Treatment of SCI still remains a tremendous challenge clinically. Minocycline could target comprehensive secondary injury via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms. Polyethylene glycol (PEG), a known sealing agent, is able to seal the damaged cell membranes and reduce calcium influx, thereby exerting neuroprotective capacity. Here, an E-selectin-targeting sialic acid - polyethylene glycol - poly (lactic-co-glycolic acid) (SAPP) copolymer was designed for delivering hydrophobic minocycline to achieve combinational therapy of SCI. The obtained SAPP copolymer could self-assemble into micelles with critical micelle concentration being of 13.40 µg/mL, and effectively encapsulate hydrophobic minocycline. The prepared drug-loaded micelles (SAPPM) displayed sustained drug release over 72 h, which could stop microglia activation and exhibited excellent neuroprotective capacity in vitro. The SAPP micelles were efficiently accumulated in the lesion site of SCI rats via the specific binding between sialic acid and E-selectin. Due to the targeting distribution and combinational effect between PEG and minocycline, SAPPM could obviously reduce the area of lesion cavity, and realize more survival of axons and myelin sheaths from the injury, thus distinctly improving hindlimb functional recovery of SCI rats and conferring superior therapeutic effect in coparison with other groups. Our work presented an effective and safe strategy for SCI targeting therapy. Besides, neuroprotective capacity of PEG deserves further investigation on other central nervous system diseases.


Assuntos
Micelas , Ácido N-Acetilneuramínico/química , Polietilenoglicóis/química , Traumatismos da Medula Espinal/terapia , Animais , Terapia Combinada , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Minociclina/farmacologia , Minociclina/uso terapêutico , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos Sprague-Dawley , Medula Espinal/patologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/tratamento farmacológico
7.
Acta Biomater ; 77: 15-27, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30126591

RESUMO

Scaffold-based tissue engineering is widely used for spinal cord injury (SCI) treatment by creating supporting and guiding neuronal tissue regeneration. However, how to enhance the axonal regeneration capacity following SCI still remains a challenge. Polysialic acid (PSA), a natural, biodegradable polysaccharide, has been increasingly explored for controlling central nervous system (CNS) development by regulating cell adhesive properties and promoting axonal growth. Here, a polycaprolactone (PCL)/PSA hybrid nanofiber scaffold encapsulating glucocorticoid methylprednisolone (MP) is developed for SCI treatment. Rat models with spinal cord transection is established and the PCL/PSA/MP scaffold is transplanted into lesion area. PCL/PSA/MP scaffold decreases tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release by inhibiting ionized calcium-binding adapter molecule 1 (Iba1) positive microglia/macrophage activation and reduces apoptosis-associated Caspase-3 protein expression. In addition, the PCL/PSA/MP scaffold inhibits axonal demyelination and glial fibrillary acidic protein (GFAP) expression, increases neurofilament 200 (NF-200) expression and improves functional outcome by Basso, Beattie and Bresnahan (BBB) test. These results demonstrate the therapeutic potential of PSA hybrid nanofiber scaffold in promoting axonal growth and enhancing the functional recovery following SCI. STATEMENT OF SIGNIFICANCE: Scaffold-based tissue engineering is widely used for spinal cord injury (SCI) treatment by creating supporting and guiding neuronal tissue regeneration. And how to enhance the axonal regeneration capacity following SCI still remains a challenge. Polysialic acid (PSA), a natural, biodegradable polysaccharide, has been increasingly explored for controlling central nervous system (CNS) development by regulating cell adhesive properties and promoting axonal growth. However, in vivo therapeutic effect of PSA scaffolds towards SCI is still lack of evidence and needs to be further explored. In this study, a novel electrospun polycaprolactone/PSA scaffold loaded with methylprednisolone (MP) was developed to achieve efficient therapeutic effects towards SCI. And we believe that it broadens the application of PSA for SCI treatment.


Assuntos
Nanofibras/química , Regeneração Nervosa/efeitos dos fármacos , Poliésteres/química , Ácidos Siálicos/química , Traumatismos da Medula Espinal/terapia , Animais , Animais Recém-Nascidos , Apoptose , Astrócitos/metabolismo , Axônios/fisiologia , Caspase 3/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Glucocorticoides/administração & dosagem , Humanos , Interleucina-6/metabolismo , Metilprednisolona/administração & dosagem , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Engenharia Tecidual , Alicerces Teciduais/química , Fator de Necrose Tumoral alfa/metabolismo
8.
Theranostics ; 7(8): 2204-2219, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740545

RESUMO

The effective treatment for acute kidney injury (AKI) is currently limited, and care is primarily supportive. Sialic acid (SA) is main component of Sialyl Lewisx antigen on the mammalian cell surface, which participates in E-selectin binding. Therefore, dexamethasone(DXM)-loaded E-selectin-targeting sialic acid-polyethylene glycol-dexamethasone (SA-PEG-DXM/DXM) conjugate micelles are designed for ameliorating AKI. The conjugates are synthesized via the esterification reaction between PEG and SA or DXM, and can spontaneously form micelles in an aqueous solution with a 65.6 µg/mL critical micelle concentration. Free DXM is incorporated into the micelles with 6.28 ± 0.21% drug loading content. In vitro DXM release from SA-PEG-DXM/DXM micelles can be prolonged to 48h. Much more SA-PEG-DXM micelles can be internalized by lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) in comparison to PEG-DXM micelles due to specific interaction between SA and E-selectin expressed on HUVECs, and consequently more SA-PEG-DXM micelles are accumulated in the kidney of AKI murine model. Furthermore, SA in SA-PEG-DXM conjugates can significantly ameliorate LPS-induced production of pro-inflammatory cytokines via suppressing LPS-activated Beclin-1/Atg5-Atg12-mediated autophagy to attenuate toxicity. Compared with free DXM and PEG-DXM/DXM micelles, SA-PEG-DXM/DXM micelles show better therapeutical effects, as reflected by the improved renal function, histopathological changes, pro-inflammatory cytokines, oxidative stress and expression of apoptotic related proteins.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Anti-Inflamatórios/metabolismo , Dexametasona/metabolismo , Selectina E/metabolismo , Terapia de Alvo Molecular/métodos , Ácido N-Acetilneuramínico/metabolismo , Polietilenoglicóis/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Modelos Animais de Doenças , Endocitose , Histocitoquímica , Células Endoteliais da Veia Umbilical Humana , Humanos , Rim/patologia , Testes de Função Renal , Camundongos , Micelas , Ácido N-Acetilneuramínico/administração & dosagem , Polietilenoglicóis/administração & dosagem , Resultado do Tratamento
9.
Biomaterials ; 131: 36-46, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28376364

RESUMO

The development of combinational anti-tumor therapy is of great value. Here, the thermal-sensitive and hepatic tumor cell targeting peptide-A54 modified polymer, A54-poly(ethylene glycol)-g-poly(acrylamide-co-acrylonitrile) (A54-PEG-g-p(AAm-co-AN)) can self-assemble into an 80 nm-sized micelle, which shows a thermal-sensitive behavior with an upper critical solution temperature (UCST) of 43 °C. This self-assembled and targeted A54-PEG-g-p(AAm-co-AN) micelle can co-encapsulate anti-tumor drug doxorubicin (DOX) and magnetic nanoparticles (MNPs) taking advantage of the hydrophobic core of the core-shell micellar structure, when the temperature is lower than 43 °C. A much higher accumulation of the MNPs@A54-PEG-g-p(AAm-co-AN) to the tumor navigated by the A54 targeting peptide is achieved. Due to the thermal-agent effect of the accumulated MNPs in tumor, the mild microwave (8 W) applied afterwards specifically elevates the local tumor temperature by 13 °C, compared to 6 °C without MNPs accumulation in 30 min. The greater temperature rise resulted from the thermal-agent effect of MNPs doesn't only activate the drug release inside tumor cells, but also achieve an augmented hyperthermia. A mild microwave activated, chemo-thermal combinational tumor therapy is thus developed.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Preparações de Ação Retardada/química , Doxorrubicina/uso terapêutico , Neoplasias Hepáticas/terapia , Nanopartículas de Magnetita/uso terapêutico , Micelas , Resinas Acrílicas/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Terapia Combinada , Doxorrubicina/administração & dosagem , Feminino , Humanos , Hipertermia Induzida , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Nus , Micro-Ondas , Peptídeos/química , Polietilenoglicóis/química
10.
Drug Deliv ; 24(1): 1856-1867, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29188738

RESUMO

In an attempt to improve therapeutic efficacy of dexamethasone (DXM)-loaded solid lipid nanoparticles (NPs) for renal ischemia-reperfusion injury (IRI)-induced acute renal injury (AKI), sialic acid (SA) is used as a ligand to target the inflamed vascular endothelium. DXM-loaded SA-conjugated polyethylene glycol (PEG)ylated NPs (SA-NPs) are prepared via solvent diffusion method and show the good colloidal stability. SA-NPs reduce apoptotic human umbilical vein endothelial cells (HUVECs) via downregulating oxidative stress-induced Bax, upregulating Bcl-xL, and inhibiting Caspase-3 and Caspase-9 activation. Cellular uptake results suggest SA-NPs can be specifically internalized by the inflamed vascular endothelial cells (H2O2-pretreated HUVECs), and the mechanism is associated with the specific binding between SA and E-selectin receptor expressed on the inflamed vascular endothelial cells. Bio-distribution results further demonstrated the enhanced renal accumulation of DXM is achieved in AKI mice treated with SA-NPs, and its content is 2.70- and 5.88-fold higher than those treated with DXM and NPs at 6 h after intravenous administration, respectively. Pharmacodynamic studies demonstrate SA-NPs effectively ameliorate renal functions in AKI mice, as reflected by improved blood biochemical indexes, histopathological changes, oxidative stress levels and pro-inflammatory cytokines. Moreover, SA-NPs cause little negative effects on lymphocyte count and bone mineral density while DXM leads to severe osteoporosis. It is concluded that SA-NPs provide an efficient and targeted delivery of DXM for ischemia-reperfusion-induced injury-induced AKI, with improved therapeutic outcomes and reduced adverse effects.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Portadores de Fármacos/química , Endotélio Vascular/efeitos dos fármacos , Lipídeos/química , Ácido N-Acetilneuramínico/química , Nanopartículas/química , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular , Dexametasona/farmacologia , Selectina E/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Polietilenoglicóis/química , Traumatismo por Reperfusão/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
11.
Sci Rep ; 6: 35910, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775017

RESUMO

Specific delivery of chemotherapy drugs and magnetic resonance imaging (MRI) contrast agent into tumor cells is one of the issues to highly efficient tumor targeting therapy and magnetic resonance imaging. Here, A54 peptide-functionalized poly(lactic-co-glycolic acid)-grafted dextran (A54-Dex-PLGA) was synthesized. The synthesized A54-Dex-PLGA could self-assemble to form micelles with a low critical micelle concentration of 22.51 µg. mL-1 and diameter of about 50 nm. The synthetic A54-Dex-PLGA micelles can encapsulate doxorubicin (DOX) as a model anti-tumor drug and superparamagnetic iron oxide (SPIO) as a contrast agent for MRI. The drug-encapsulation efficiency was about 80% and the in vitro DOX release was prolonged to 72 hours. The DOX/SPIO-loaded micelles could specifically target BEL-7402 cell line. In vitro MRI results also proved the specific binding ability of A54-Dex-PLGA/DOX/SPIO micelles to hepatoma cell BEL-7402. The in vivo MR imaging experiments using a BEL-7402 orthotopic implantation model further validated the targeting effect of DOX/SPIO-loaded micelles. In vitro and in vivo anti-tumor activities results showed that A54-Dex-PLGA/DOX/SPIO micelles revealed better therapeutic effects compared with Dex-PLGA/DOX/SPIO micelles and reduced toxicity compared with commercial adriamycin injection.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Meios de Contraste/administração & dosagem , Portadores de Fármacos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Terapia de Alvo Molecular/métodos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Compostos Férricos/administração & dosagem , Histocitoquímica , Humanos , Ácido Láctico/administração & dosagem , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Camundongos Nus , Microscopia , Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA