Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Genomics ; 23(1): 242, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35350975

RESUMO

BACKGROUND: An important aspect of studying evolution is to understand how new species are formed and their uniqueness is maintained. Hybridization can lead to the formation of new species through reorganization of the adaptive system and significant changes in phenotype. Interestingly, eight stable strains of 2nNCRC derived from interspecies hybridization have been established in our laboratory. To examine the phylogeographical pattern of the widely distributed genus Carassius across Eurasia and investigate the possible homoploid hybrid origin of the Carassius auratus complex lineage in light of past climatic events, the mitochondrial genome (mtDNA) and one nuclear DNA were used to reconstruct the phylogenetic relationship between the C. auratus complex and 2nNCRC and to assess how demographic history, dispersal and barriers to gene flow have led to the current distribution of the C. auratus complex. RESULTS: As expected, 2nNCRC had a very close relationship with the C. auratus complex and similar morphological characteristics to those of the C. auratus complex, which is genetically distinct from the other three species of Carassius. The estimation of divergence time and ancestral state demonstrated that the C. auratus complex possibly originated from the Yangtze River basin in China. There were seven sublineages of the C. auratus complex across Eurasia and at least four mtDNA lineages endemic to particular geographical regions in China. The primary colonization route from China to Mongolia and the Far East (Russia) occurred during the Late Pliocene, and the diversification of other sublineages of the C. auratus complex specifically coincided with the interglacial stage during the Early and Mid-Pleistocene in China. CONCLUSION: Our results support the origin of the C. auratus complex in China, and its wide distribution across Eurasia was mainly due to natural Pleistocene dispersal and recent anthropogenic translocation. The sympatric distribution of the ancestral area for both parents of 2nNCRC and the C. auratus complex, as well as the significant changes in the structure of pharyngeal teeth and morphological characteristics between 2nNCRC and its parents, imply that homoploid hybrid speciation (HHS) for C. auratus could likely have occurred in nature. The diversification pattern indicated an independent evolutionary history of the C. auratus complex, which was not separated from the most recent common ancestor of C. carassius or C. cuvieri. Considering that the paleoclimate oscillation and the development of an eastward-flowing drainage system during the Pliocene and Pleistocene in China provided an opportunity for hybridization between divergent lineages, the formation of 2nNCRC in our laboratory could be a good candidate for explaining the HHS of C. auratus in nature.


Assuntos
Genoma Mitocondrial , Carpa Dourada , Animais , DNA Mitocondrial/genética , Carpa Dourada/genética , Filogenia , Filogeografia
2.
BMC Pharmacol Toxicol ; 25(1): 21, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409046

RESUMO

This study aimed to design and evaluate the transdermal permeation of Huperzine A ethosomes gel in vitro. Huperzine A ethosomes were prepared using the injection method, and their physical and chemical properties were characterized. A comparison was made between Huperzine A ethosomes gel, ordinary gel, and cream. The Franz diffusion cell test on mouse abdominal skin was conducted, and Huperzine A concentration was determined using LC-MS/MS. Transdermal volume, skin retention, and transdermal rate were used to assess the percutaneous permeability of the three preparations. Results demonstrated that Huperzine A ethosomes gel exhibited significantly higher accumulative permeation, transdermal rate, and skin retention compared to ordinary gel and cream. The findings suggest that Huperzine A ethosomes gel, with its controllable quality and favorable transdermal absorption properties, holds potential as a safe option for clinical administration.


Assuntos
Alcaloides , Sesquiterpenos , Pele , Espectrometria de Massas em Tandem , Camundongos , Animais , Cromatografia Líquida , Administração Cutânea , Lipossomos
3.
ACS Appl Mater Interfaces ; 16(7): 8228-8237, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343190

RESUMO

Designing a novel biomaterial for wound healing is based on biocompatibility and excellent mechanical strength. In this study, bioactive glass (BG) and zeolitic imidazolate framework-8 (ZIF-8) have been incorporated into poly(ε-caprolactone)/poly(vinyl alcohol) (PCL/PVA) composite skin scaffolds via microfluidic electrospinning. Interestingly, the addition of ZIF-8 further strengthens the BG stability and demonstrates better antibacterial effects. Utilizing the slow release of Zn, Ca, and Si ions, it also significantly promotes growth factor expression and skin regeneration. In addition, it is further demonstrated by in vitro and in vivo studies that the prepared composite skin scaffolds possess excellent biocompatibility, antibacterial capabilities, and mechanical properties. The prepared BG/ZIF-8-loaded scaffold possesses high tensile strength (26 MPa) and excellent antibacterial properties (achieves 89.64 and 78.8% inhibition of E. coli and S. aureus, respectively), and cell viability increased by 51.2%. More importantly, the wound shrinkage of the BG/ZIF-8-loaded scaffold is better than that of an unloaded scaffold, and the shrinkage rates of PCL/PVA@BG/ZIF-8(1 wt %) group is 95% with 2.2 mm granulation growth thickness within 12 days. Thus, the composite skin scaffold loaded with BG/ZIF-8 prepared by microfluidic electrospinning provides a new perspective for accelerating wound healing and is a potential novel therapeutic strategy for efficient wound healing.


Assuntos
Escherichia coli , Staphylococcus aureus , Poliésteres/farmacologia , Cicatrização , Antibacterianos/farmacologia , Alicerces Teciduais
4.
Dent Mater ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871525

RESUMO

OBJECTIVE: This review elucidates the mechanisms underpinning intrafibrillar mineralization, examines various amorphous calcium phosphate (ACP) stabilizers employed in dentin's intrafibrillar mineralization, and addresses the challenges encountered in clinical applications of ACP-based bioactive materials. METHODS: The literature search for this review was conducted using three electronic databases: PubMed, Web of Science, and Google Scholar, with specific keywords. Articles were selected based on inclusion and exclusion criteria, allowing for a detailed examination and summary of current research on dentin remineralization facilitated by ACP under the influence of various types of stabilizers. RESULTS: This review underscores the latest advancements in the role of ACP in promoting dentin remineralization, particularly intrafibrillar mineralization, under the regulation of various stabilizers. These stabilizers predominantly comprise non-collagenous proteins, their analogs, and polymers. Despite the diversity of stabilizers, the mechanisms they employ to enhance intrafibrillar remineralization are found to be interrelated, indicating multiple driving forces behind this process. However, challenges remain in effectively designing clinically viable products using stabilized ACP and maximizing intrafibrillar mineralization with limited materials in practical applications. SIGNIFICANCE: The role of ACP in remineralization has gained significant attention in dental research, with substantial progress made in the study of dentin biomimetic mineralization. Given ACP's instability without additives, the presence of ACP stabilizers is crucial for achieving in vitro intrafibrillar mineralization. However, there is a lack of comprehensive and exhaustive reviews on ACP bioactive materials under the regulation of stabilizers. A detailed summary of these stabilizers is also instrumental in better understanding the complex process of intrafibrillar mineralization. Compared to traditional remineralization methods, bioactive materials capable of regulating ACP stability and controlling release demonstrate immense potential in enhancing clinical treatment standards.

5.
Am J Chin Med ; 52(4): 1137-1154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38879746

RESUMO

Flavonol and flavonoid compounds are important natural compounds with various biomedical activities. Therefore, it is of great significance to develop a strategy for the specific extraction of flavonol and flavonoid compounds. Quercetin is a well-studied flavonoid possessing many health benefits. This compound is a versatile antioxidant known to possess protective abilities against body tissue injury induced by pathological situations and various drug toxicities. Although quercetin is widely distributed in many plants, its content generally is not very high. Therefore, the specific extraction of quercetin as well as other flavonol and flavonoid compounds has profound significance. In this work, the quercetin molecularly imprinting polymer (QMIP) was successfully prepared, in which a typical flavonol quercetin was selected as the template molecule. QMIP was synthesized by performing the surface molecular imprinting technology on the surface of NH2-MIL-101(Fe). Our study results showed that QMIP exhibited quick binding kinetic behavior, a high adsorption capacity (57.04[Formula: see text]mg/g), and the specific recognition ability toward quercetin compared with structurally distinct compounds (selective [Formula: see text]). The specific adsorption ability of quercetin by QMIP was further explained using computation simulation that molecules with non-planar 3D conformations hardly entered the molecularly imprinted cavities on QMIP. Finally, QMIP was successfully used for the specific extraction of quercetin and five other flavonol and flavonoid compounds in the crude extracts from Sapium sebiferum. This study proposes a new strategy to synthesize the molecularly imprinted polymer based on a single template for enriching and loading a certain class of active ingredients with similar core structures from variable botanicals.


Assuntos
Flavonoides , Flavonóis , Impressão Molecular , Polímeros Molecularmente Impressos , Quercetina , Quercetina/isolamento & purificação , Quercetina/química , Flavonoides/isolamento & purificação , Flavonoides/química , Flavonóis/isolamento & purificação , Flavonóis/química , Polímeros Molecularmente Impressos/química , Antioxidantes/isolamento & purificação , Adsorção , Polímeros/química
6.
Front Bioeng Biotechnol ; 11: 1216651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090709

RESUMO

Despite the large demand for dental restoration each year, the design of crown restorations is mainly performed via manual software operation, which is tedious and subjective. Moreover, the current design process lacks biomechanics optimization, leading to localized stress concentration and reduced working life. To tackle these challenges, we develop a fully automated algorithm for crown restoration based on deformable model fitting and biomechanical optimization. From a library of dental oral scans, a conditional shape model (CSM) is constructed to represent the inter-teeth shape correlation. By matching the CSM to the patient's oral scan, the optimal crown shape is estimated to coincide with the surrounding teeth. Next, the crown is seamlessly integrated into the finish line of preparation via a surface warping step. Finally, porous internal supporting structures of the crown are generated to avoid excessive localized stresses. This algorithm is validated on clinical oral scan data and achieved less than 2 mm mean surface distance as compared to the manual designs of experienced human operators. The mechanical simulation was conducted to prove that the internal supporting structures lead to uniform stress distribution all over the model.

7.
Int J Nanomedicine ; 18: 8001-8021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164266

RESUMO

Nucleic acids have emerged as promising therapeutic agents for many diseases because of their potential in modulating gene expression. However, the delivery of nucleic acids remains a significant challenge in gene therapy. Although viral vectors have shown high transfection efficiency, concerns regarding teratogenicity or carcinogenicity have been raised. Non-viral vehicles, including cationic polymers, liposomes, and inorganic materials possess advantages in terms of safety, ease of preparation, and low cost. Nevertheless, they also face limitations related to immunogenicity, quick clearance in vivo, and lack of targeting specificity. On the other hand, bioinspired strategies have shown increasing potential in the field of drug delivery, yet there is a lack of comprehensive reviews summarizing the rapid development of bioinspired nanoparticles based on the cell membrane camouflage to construct the nucleic acids vehicles. Herein, we enumerated the current difficulties in nucleic acid delivery with various non-viral vehicles and provided an overview of bioinspired strategies for nucleic acid delivery.


Assuntos
Nanopartículas , Ácidos Nucleicos , Transfecção , Lipossomos , Membrana Celular
8.
J Hazard Mater ; 453: 131399, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37062095

RESUMO

Research into plastic-degrading bacteria and fungi is important for understanding how microorganisms can be used to address the problem of plastic pollution and for developing new approaches to sustainable waste management and bioplastic production. In the present study, we isolated 55 bacterial and 184 fungal strains degrading polycaprolactone (PCL) in plastic waste samples from Dafeng coastal salt marshes, Jiangsu, China. Of these, Jonesia and Streptomyces bacteria also showed potential to degrade other types of petroleum-based polymers. The metabarcoding results proved the existence of plastisphere as a distinct ecological niche regardless of the plastic types where 27 bacterial and 29 fungal amplicon sequence variants (ASVs) were found to be significantly (p < 0.05) enriched, including some belonging to Alternaria (Ascomycota, Fungi) and Pseudomonas (Gammaproteobacteria, Bacteria) that were also mined out by the method of cultivation. Further assembly analyses demonstrated the importance of deterministic processes especially the environmental filtering effect of carbon content and pH on bacteria as well as the carbon and cation content on fungi in shaping the plastisphere communities in this ecosystem. Thus, the unique microbiome of the plastisphere in the terrestrial-marine ecotone is enriched with microorganisms that are potentially capable of utilizing petroleum-based polymers, making it a valuable resource for screening plastic biodegraders.


Assuntos
Ascomicetos , Microbiota , Petróleo , Polímeros , Plásticos , Bactérias/genética , Biodegradação Ambiental
9.
Nat Chem ; 14(3): 294-303, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34824460

RESUMO

The development of sustainable polymers that possess useful material properties competitive with existing petroleum-derived polymers is a crucial goal but remains a formidable challenge for polymer science. Here we demonstrate that irreversible ring-opening polymerization (IROP) of biomass-derived five-membered thionolactones is an effective and robust strategy for the polymerization of non-strained five-membered rings-these polymerizations are commonly thermodynamically forbidden under ambient conditions, at industrially relevant temperatures of 80-100 °C. Computational studies reveal that the selective IROP of these thionolactones is thermodynamically driven by S/O isomerization during the ring-opening process. IROP of γ-thionobutyrolactone, a representative non-strained thionolactone, affords a sustainable polymer from renewable resources that possesses external-stimuli-triggered degradability. This poly(thiolactone) also exhibits high performance, with its key thermal and mechanical properties comparing well to those of commercial petroleum-based low-density polyethylene. This IROP strategy will enable conversion of five-membered lactones, generally unachievable by other polymerization methods, into sustainable polymers with a range of potential applications.


Assuntos
Petróleo , Polímeros , Isomerismo , Lactonas , Polimerização
10.
Mater Today Bio ; 16: 100344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35833197

RESUMO

Pulp injury is one of the most common clinical diseases, and severe cases are usually associated with the functional loss of the tooth, while the current clinical treatment modality is only a cavity filling procedure without the regeneration of the dentin-pulp complex, thus leading to a devitalized and brittle tooth. In this study, carbon dots (CDots) with excellent biocompatibility are prepared from ascorbic acid and polyethyleneimine via a hydrothermal method. The as-prepared CDots can enhance extracellular matrix (ECM) secretion of human dental pulp stem cells (DPSCs), giving rise to increased cell adhesion on ECM and a stronger osteogenic/odontogenic differentiation capacity of DPSCs. Further, the mechanism underlying CDots-enhanced ECM secretion is revealed by the transcriptome analysis, Western blot assay and molecular dynamics simulation, identifying that the pharmacological activities of CDots are originated from a reasonable activation of the autophagy, which is mediated by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Based on the abundant CDots-induced ECM and thereby the reinforcement of the cell-ECM adhesion, an intact dental pulp stem cell sheet can be achieved, which in return promote in vivo the efficient regeneration of dentin-pulp complex as well as blood vessels.

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3779-3782, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892058

RESUMO

In histopathological analysis of radicular cysts (RCs), lesions in epithelium can provide pathologists with rich information on pathologic degree, which is helpful to determine the type of periapical lesions and make precise treatment planning. Automatic segmentation and localization of epithelium from whole slide images (WSIs) can assist pathologists to complete pathological diagnosis more quickly. However, the class imbalance problem caused by the small proportion of fragmented epithelium in RCs imposes challenge on the typical automatic one-stage segmentation method. In this paper, we proposed a classification-guided segmentation algorithm (CGSA) for accurate segmentation. Our method was a two-stage model, including a classification network for region of interest (ROI) location and a segmentation network guided by classification. The classification stage eliminated most irrelevant areas and alleviated the class imbalance problem faced by the segmentation model. The results of 5-fold cross validation demonstrated that CGSA outperformed the one-stage segmentation method which was lacking in prior epithelium localization information. The epithelium segmentation achieved an overall Dice's coefficient of 0.722, and intersection over union (IoU) of 0.593, which improved by 5.5% and 5.9% respectively compared with the one-stage segmentation method using UNet.Clinical Relevance- This work presents a framework for automatic epithelium segmentation in histopathological images of RCs. It can be applied to make up for the shortcomings of manual annotation which is labor-intensive, time-consuming and objective.


Assuntos
Aprendizado Profundo , Cisto Radicular , Algoritmos , Epitélio , Humanos , Cisto Radicular/diagnóstico por imagem
12.
Front Pediatr ; 9: 648255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095025

RESUMO

Background: Williams-Beuren syndrome (WBS) is a rare genetic syndrome with a characteristic "elfin" facial gestalt. The "elfin" facial characteristics include a broad forehead, periorbital puffiness, flat nasal bridge, short upturned nose, wide mouth, thick lips, and pointed chin. Recently, deep convolutional neural networks (CNNs) have been successfully applied to facial recognition for diagnosing genetic syndromes. However, there is little research on WBS facial recognition using deep CNNs. Objective: The purpose of this study was to construct an automatic facial recognition model for WBS diagnosis based on deep CNNs. Methods: The study enrolled 104 WBS children, 91 cases with other genetic syndromes, and 145 healthy children. The photo dataset used only one frontal facial photo from each participant. Five face recognition frameworks for WBS were constructed by adopting the VGG-16, VGG-19, ResNet-18, ResNet-34, and MobileNet-V2 architectures, respectively. ImageNet transfer learning was used to avoid over-fitting. The classification performance of the facial recognition models was assessed by five-fold cross validation, and comparison with human experts was performed. Results: The five face recognition frameworks for WBS were constructed. The VGG-19 model achieved the best performance. The accuracy, precision, recall, F1 score, and area under curve (AUC) of the VGG-19 model were 92.7 ± 1.3%, 94.0 ± 5.6%, 81.7 ± 3.6%, 87.2 ± 2.0%, and 89.6 ± 1.3%, respectively. The highest accuracy, precision, recall, F1 score, and AUC of human experts were 82.1, 65.9, 85.6, 74.5, and 83.0%, respectively. The AUCs of each human expert were inferior to the AUCs of the VGG-16 (88.6 ± 3.5%), VGG-19 (89.6 ± 1.3%), ResNet-18 (83.6 ± 8.2%), and ResNet-34 (86.3 ± 4.9%) models. Conclusions: This study highlighted the possibility of using deep CNNs for diagnosing WBS in clinical practice. The facial recognition framework based on VGG-19 could play a prominent role in WBS diagnosis. Transfer learning technology can help to construct facial recognition models of genetic syndromes with small-scale datasets.

13.
J Orthop Surg Res ; 15(1): 327, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795334

RESUMO

BACKGROUND: This study aimed to investigate the regulation of CpG oligodeoxynucleotides (ODNs) on proliferation and osteogenic differentiation of MC3T3 cells. METHODS: The laser co-focusing and flow cytometry assay were employed to detect cell uptake of CpG ODN 2006. Twelve ODNs were sythesized, and their effects on proliferation and differentiation were detected by MTT and alkaline phosphatase (ALP) activity assay. Flow cytometry assay was used to examine the regulation of CpG ODN on cell cycle. Quantitative real-time PCR (qRT-PCR) and western blot were used to evaluate the regulation of CpG ODN on mRNA and protein expression of osteogenic differentiation genes. RESULTS: The phosphorothioate CpG ODN 2006 could efficiently enter the MC3T3 cells in 1 h and locate in the cytoplasm. The MTT assay demonstrated CpG ODNs could promote MC3T3 cell proliferation and differentiation in the early stage, and gradually attenuated along with the increase of treating time, except for BW001 and FC001. qRT-PCR assay demonstrated that all the 12 CpG ODNs could promote the relative expression level of osteogenic differentiated genes, SP7 and OCN. In addition, western blot analysis suggested the CpG ODNs of BW001 and FC001 could increase the protein expression of P27Kip1 and Runx2 and decrease the protein expression of cyclin D1. CONCLUSION: The selected CpGODNs may be a potential gene therapy for bone regeneration of periodontitis.


Assuntos
Oligodesoxirribonucleotídeos/farmacologia , Osteoblastos/metabolismo , Receptores Toll-Like/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ligantes , Camundongos , Oligodesoxirribonucleotídeos/síntese química , Osteogênese/efeitos dos fármacos , Periodontite/tratamento farmacológico
14.
ACS Appl Mater Interfaces ; 12(45): 50287-50302, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33121247

RESUMO

Nucleic acid transfer has shown significant potential in the treatment of bone damage because of its long lasting local effect and lower cost. Nonviral vectors, such as nanomaterials, with higher biocompatibility are increasedly applied in the study of bone defect repair. Carbon dots with various reactive groups on the surface not only provide a unique surface to carry therapeutic genes, but also some carbon dots have been reported to promote osteogenic differentiation. The bone regeneration effect of carbon dots in vivo, however, is rarely investigated. MiR-2861 has revealed osteogenic differentiation effects. In the current study, we created ascorbic acid-PEI carbon dots (CD), which were able to carry miR-2861, by the microwave-assisted pyrolysis method. Results demonstrated that CD had excellent fluorescence stability leading to good fluorescence imaging in vitro and in vivo. CD was efficiently internalized into bone marrow stromal cells (BMSCs) through the clathrin-mediated endocytosis pathway and distributed in the mitochondria, endoplasmic reticulum, lysosome, and nucleus. Results from alkaline phosphatase staining, alizarin red staining, and reverse transcription real-time PCR (RT-QPCR) showed that our CD indeed had osteogenic effects in vitro. Flow cytometry data indicated that CD could efficiently deliver miR-2861 into BMSCs in vitro, and CD carrying miR-2861 (CD@miR) had the strongest osteogenic effects. Analyses of hematology, serum biochemistry, and histology showed that CD and CD@miR did not have cytotoxicity and had higher biocompatibility in vivo. Most interestingly, CD and miR-2861 in the CD@miR could act synergistically to promote osteogenic differentiation in vitro and new bone regeneration in vivo remarkably. Our results clearly indicate that the osteogenic CD delivering osteogenic therapeutic gene, miR-2861, can obtain much stronger bone regeneration ability, suggesting that our CD has great potential in future clinical application.


Assuntos
Ácido Ascórbico/química , Carbono/química , MicroRNAs/farmacologia , Polietilenoimina/química , Pontos Quânticos/química , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/química , MicroRNAs/química , MicroRNAs/genética , Micro-Ondas , Estrutura Molecular , Imagem Óptica , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Wistar , Propriedades de Superfície
15.
Biomaterials ; 197: 380-392, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30703743

RESUMO

Systemic lupus erythematosus (SLE) constitutes an autoimmune disease characterized by the breakdown of tolerance to self-antigens, sustained production of pathogenic autoantibodies, and damage to multiple organs and tissues. Nanoparticle (NP)-based therapeutics have demonstrated efficacy in attenuating the progression of SLE. However, investigations of nano-drugs that address the crucial initiating factor in the pathogenesis of SLE; e.g., inefficient clearance of apoptotic cells by phagocytes and consequent accumulation of self-antigens, have seldom been reported. Here, an apoptotic cell-mimicking gold nanocage (AuNC)-based nano drug carrier capable of correcting the impaired clearance of apoptotic cells in SLE was rationally designed and generated by conjugating phosphatidylserine (PS) on the surface of liposome-coated AuNCs for liver X receptor (LXR) agonist T0901317 delivery. Notably, PS-lipos-AuNC@T0901317 could efficiently enhance apoptotic cell clearance by elevating the expression of Mer, one of the pivotal phagocytosis-associated receptors on macrophages, resulting in decreased production of anti-dsDNA autoantibodies, reduced inflammatory response, and alleviation of kidney damage in lupus model mice. Additionally, PS-lipos-AuNC could be tracked by photoacoustic imaging for nano drug carrier biodistribution. By addressing the crucial pathogenic factor of SLE, the NP-based delivery system in this study is envisioned to provide a promising strategy to treat this complex and challenging disease.


Assuntos
Apoptose , Sistemas de Liberação de Medicamentos , Ouro/administração & dosagem , Hidrocarbonetos Fluorados/administração & dosagem , Receptores X do Fígado/agonistas , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nanocápsulas/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , Autoanticorpos/análise , Citocinas/metabolismo , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Feminino , Ouro/farmacocinética , Hidrocarbonetos Fluorados/uso terapêutico , Hidrocarbonetos Fluorados/toxicidade , Lipossomos/administração & dosagem , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Fosfatidilserinas , Sulfonamidas/uso terapêutico , Sulfonamidas/toxicidade , Distribuição Tecidual , c-Mer Tirosina Quinase/biossíntese , c-Mer Tirosina Quinase/genética
16.
Acta Biomater ; 86: 235-246, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611793

RESUMO

Periodontitis is an inflammatory disease induced by complex interactions between host immune system and plaque microorganism. Alveolar bone resorption caused by periodontitis is considered to be one of the main reasons for tooth loss in adults. To terminate the alveolar bone resorption, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. In this study, chitosan (CS), ß-sodium glycerophosphate (ß-GP), and gelatin were used to prepare an injectable and thermosensitive hydrogel, which could continuously release aspirin and erythropoietin (EPO) to exert pharmacological effects of anti-inflammation and tissue regeneration, respectively. The releasing profile showed that aspirin and EPO could be continuously released from the hydrogels, which exhibited no toxicity both in vitro and in vivo, for at least 21 days. Immunohistochemistry staining and micro-CT analyses indicated that administration of CS/ß-GP/gelatin hydrogels loaded with aspirin/EPO could terminate the inflammation and recover the height of the alveolar bone, which is further confirmed by histological observations. Our results suggested that CS/ß-GP/gelatin hydrogels are easily prepared as drug-loading vectors with excellent biocompatibility, and the CS/ß-GP/gelatin hydrogels loaded with aspirin/EPO are quite effective in anti-inflammation and periodontium regeneration, which provides a great potential candidate for periodontitis treatment in the dental clinic. Statement of Significance To terminate the alveolar bone resorption caused by periodontitis, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. Here, (1) the chitosan (CS)/ß-sodium glycerophosphate/gelatin hydrogels loaded with aspirin/erythropoietin (EPO) can form at body temperature in 5 min with excellent biocompatibility in vitro and in vivo; (2) The faster release of aspirin than EPO in the early stage is beneficial for anti-inflammation and provides a microenvironment for ensuring the regeneration function of EPO in the following step. In vivo experiments revealed that the hydrogels are effective in the control of inflammation and regeneration of the periodontium. These results indicate that our synthesized hydrogels have a great potential in the future clinical application.


Assuntos
Aspirina/farmacologia , Eritropoetina/farmacologia , Hidrogéis/química , Injeções , Periodonto/fisiologia , Regeneração/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Quitosana/toxicidade , Preparações de Ação Retardada/farmacologia , Gelatina/toxicidade , Glicerofosfatos/toxicidade , Masculino , Camundongos Nus , Periodonto/efeitos dos fármacos , Ratos Wistar , Espectrofotometria Ultravioleta , Microtomografia por Raio-X
17.
Int J Nanomedicine ; 13: 187-198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29343957

RESUMO

Oral cancer is a type of head and neck cancer that is the seventh most frequent cancer and the ninth most frequent cause of death globally. About 90% of oral cancer is of squamous cell carcinoma type. Surgery and radiation with and without chemotherapy are the major treatments for oral cancer. Better advanced treatment is still needed. Multidrug resistance plays an important role in failure of oral cancer chemotherapy. In this study, we tried to fabricate a novel nanoparticle that could carry both MDR1-siRNA to block MDR1 expression and doxorubicin (DOX), a chemotherapy drug, into cancer cells in order to directly kill the cells with little or no effect of multidrug resistance. Results showed that mesoporous silica nanoparticles (MSNP) can be modified by cationic polymerpolyethylenimine (PEI) to obtain positive charges on the surface, which could enable the MSNP to carry MDR1-siRNA and DOX. The transfection efficiency assays demonstrated that the MSNP-PEI-DOX/ MDR1-siRNA was efficiently transfected into KBV cells in vitro. KBV cells transfected with MSNP-PEI-DOX/MDR1-siRNA could effectively decrease gene expression of MDR1 (~70% increase after 72 hours posttreatment) and induce the apoptosis of KBV cells (24.27% after 48 hours posttreatment) in vitro. Importantly, MSNP-PEI-DOX/MDR1-siRNA dramatically reduced the tumor size (81.64% decrease after 28 days posttreatment) and slowed down tumor growth rate compared to the control group in vivo (P<0.05). In the aggregate, newly synthesized MSNP-PEI-DOX/MDR1-siRNA improves cancer chemotherapy effect in terms of treating multidrug-resistant cancer compared to DOX only, clearly demonstrating that MSNP-PEI-DOX/MDR1-siRNA has potential therapeutic application for multidrug-resistant cancer in the future.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Neoplasias Bucais/tratamento farmacológico , Nanopartículas/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Nanopartículas/química , Polietilenoimina/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Dióxido de Silício/química , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
18.
ACS Nano ; 10(6): 5856-63, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27232534

RESUMO

This study demonstrates high contrast and sensitivity by designing a dual-emissive hydrogel particle system, whose two emissions respond to pH and temperature strongly and independently. It describes the photoluminescence (PL) response of poly(N-isopropylacrylamide) (PNIPAM)-based core/shell hydrogel nanoparticles with dual emission, which is obtained by emulsion polymerization with potassium persulfate, consisting of the thermo- and pH-responsive copolymers of PNIPAM and poly(acrylic acid) (PAA). A red-emission rare-earth complex and a blue-emission quaternary ammonium tetraphenylethylene derivative (d-TPE) with similar excitation wavelengths are inserted into the core and shell of the hydrogel nanoparticles, respectively. The PL intensities of the nanoparticles exhibit a linear temperature response in the range from 10 to 80 °C with a change as large as a factor of 5. In addition, the blue emission from the shell exhibits a linear pH response between pH 6.5 and 7.6 with a resolution of 0.1 unit, while the red emission from the core is pH-independent. These stimuli-responsive PL nanoparticles have potential applications in biology and chemistry, including bio- and chemosensors, biological imaging, cancer diagnosis, and externally activated release of anticancer drugs.


Assuntos
Resinas Acrílicas , Técnicas Biossensoriais , Hidrogéis , Nanopartículas , Concentração de Íons de Hidrogênio , Polímeros , Temperatura
19.
ACS Appl Mater Interfaces ; 8(48): 32706-32716, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934165

RESUMO

The emerging photoluminescent carbon-based nanomaterials are promising in various fields besides cell imaging and carrier transport. Carbon nanomaterials with specific biological functions, however, are rarely investigated. Aspirin is a very common anti-inflammatory medication to relieve aches and pains. In this study, we have tried to create a carbon nanoparticle with aspirin, and we expect that this new carbon nanoparticle will have both anti-inflammatory and fluorescent biomarker functions. Fluorescent aspirin-based carbon dots (FACDs) were synthesized by condensing aspirin and hydrazine through a one-step microwave-assisted method. Imaging data demonstrated that FACDs efficiently entered into human cervical carcinoma and mouse monocyte macrophage cells in vitro with low cell toxicity. Results from quantitative polymerase chain reaction and histological analysis indicated that FACDs possessed effective anti-inflammatory effects in vitro and in vivo compared to aspirin only. Hematology, serum biochemistry, and histology results suggested that FACDs also had no significant toxicity in vivo. Our results clearly demonstrate that FACDs have dual functions, cellular imaging/bioimaging and anti-inflammation, and suggest that FACDs have great potential in future clinical applications.


Assuntos
Anti-Inflamatórios não Esteroides/química , Aspirina/química , Carbono/química , Pontos Quânticos/química , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Aspirina/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Células da Medula Óssea/efeitos dos fármacos , Carbono/administração & dosagem , Diagnóstico por Imagem/métodos , Modelos Animais de Doenças , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Células HeLa , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Células KB , Masculino , Camundongos , Camundongos Nus , Pontos Quânticos/administração & dosagem , Células RAW 264.7 , Distribuição Aleatória , Ratos Wistar , Células Estromais/efeitos dos fármacos
20.
ACS Appl Mater Interfaces ; 6(16): 14552-61, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25134068

RESUMO

Photothermal nanoplatforms with small size, low cost, multifunctionality, good biocompatibility and in particular biodegradability are greatly desired in the exploration of novel diagnostic and therapeutic methodologies. Despite Fe3O4 nanoparticles (NPs) have been approved as safe clinical agents, the low molar extinction coefficient and subsequent poor photothermal performance shed the doubt as effective photothermal materials. In this paper, we demonstrate the fabrication of polypyrrole (PPy)-enveloped Fe3O4 NP superstructures with a spherical morphology, which leads to a 300-fold increase in the molar extinction coefficient. The basic idea is the optimization of Fe3O4 electronic structures. By controlling the self-assembly of Fe3O4 NPs, the diameters of the superstructures are tuned from 32 to 64 nm. This significantly enhances the indirect transition and magnetic coupling of Fe ions, thus increasing the molar extinction coefficient of Fe3O4 NPs from 3.65 × 10(6) to 1.31 × 10(8) M(-1) cm(-1) at 808 nm. The envelopment of Fe3O4 superstructures with conductive PPy shell introduces additional electrons in the Fe3O4 oscillation system, and therewith further enhances the molar extinction coefficient to 1.12 × 10(9) M(-1) cm(-1). As a result, the photothermal performance is greatly improved. Primary cell experiments indicate that PPy-enveloped Fe3O4 NP superstructures are low toxic, and capable to kill Hela cells under near-infrared laser irradiation. Owing to the low cost, good biocompatibility and biodegradability, the PPy-enveloped Fe3O4 NP superstructures are promising photothermal platform for establishing novel diagnostic and therapeutic methods.


Assuntos
Óxido Ferroso-Férrico/química , Nanopartículas Metálicas/química , Polímeros/química , Pirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA