Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(18): eadg3390, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146137

RESUMO

Periodontitis is a chronic inflammatory disease associated with persistent oral microbial dysbiosis. The human ß-glucuronidase (GUS) degrades constituents of the periodontium and is used as a biomarker for periodontitis severity. However, the human microbiome also encodes GUS enzymes, and the role of these factors in periodontal disease is poorly understood. Here, we define the 53 unique GUSs in the human oral microbiome and examine diverse GUS orthologs from periodontitis-associated pathogens. Oral bacterial GUS enzymes are more efficient polysaccharide degraders and processers of biomarker substrates than the human enzyme, particularly at pHs associated with disease progression. Using a microbial GUS-selective inhibitor, we show that GUS activity is reduced in clinical samples obtained from individuals with untreated periodontitis and that the degree of inhibition correlates with disease severity. Together, these results establish oral GUS activity as a biomarker that captures both host and microbial contributions to periodontitis, facilitating more efficient clinical monitoring and treatment paradigms for this common inflammatory disease.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doenças Periodontais , Periodontite , Humanos , Glucuronidase/metabolismo , Microbioma Gastrointestinal/fisiologia , Doenças Periodontais/etiologia , Periodontite/microbiologia , Inibidores Enzimáticos/farmacologia
2.
Nat Commun ; 13(1): 7438, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460670

RESUMO

Complex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging. Here we describe the first reported sulfur-linked polysaccharides with potentially altered conformational state(s) that are recalcitrant to digestion by heparanase, an enzyme important in human health and disease. An artificial sugar donor with a sulfhydryl functionality is synthesized and enzymatically incorporated into polysaccharide chains utilizing heparosan synthase. Used alone, this donor adds a single thio-sugar onto the termini of nascent chains. Surprisingly, in chain co-polymerization reactions with a second donor, this thiol-terminated heparosan also serves as an acceptor to form an unnatural thio-glycosidic bond ('S-link') between sugar residues in place of a natural 'O-linked' bond. S-linked heparan sulfate analogs are not cleaved by human heparanase. Furthermore, the analogs act as competitive inhibitors with > ~200-fold higher potency than expected; as a rationale, molecular dynamic simulations suggest that the S-link polymer conformations mimic aspects of the transition state. Our analogs form the basis for future cancer therapeutics and modulators of protein/sugar interactions.


Assuntos
Polímeros , Açúcares , Humanos , Glucuronidase , Enxofre , Compostos de Sulfidrila
3.
Biomaterials ; 24(27): 5015-22, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14559015

RESUMO

N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is water-soluble derivative of chitosan (CS), synthesized by the reaction between glycidyl-trimethyl-ammonium chloride and CS. HTCC nanoparticles have been formed based on ionic gelation process of HTCC and sodium tripolyphosphate (TPP). Bovine serum albumin (BSA), as a model protein drug, was incorporated into the HTCC nanoparticles. HTCC nanoparticles were 110-180 nm in size, and their encapsulation efficiency was up to 90%. In vitro release studies showed a burst effect and a slow and continuous release followed. Encapsulation efficiency was obviously increased with increase of initial BSA concentration. Increasing TPP concentration from 0.5 to 0.7 mg/ml promoted encapsulation efficiency from 46.7% to 90%, and delayed release. As for modified HTCC nanoparticles, adding polyethylene glycol (PEG) or sodium alginate obviously decreased the burst effect of BSA from 42% to 18%. Encapsulation efficiency was significantly reduced from 47.6% to 2% with increase of PEG from 1.0 to 20.0 mg/ml. Encapsulation efficiency was increased from 14.5% to 25.4% with increase of alginate from 0.3 to 1.0 mg/ml.


Assuntos
Quitina/química , Materiais Revestidos Biocompatíveis/química , Preparações de Ação Retardada/química , Teste de Materiais , Nanotubos , Veículos Farmacêuticos/química , Compostos de Amônio Quaternário/química , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/química , Adsorção , Quitina/análogos & derivados , Quitina/isolamento & purificação , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/isolamento & purificação , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/isolamento & purificação , Conformação Molecular , Movimento (Física) , Veículos Farmacêuticos/síntese química , Veículos Farmacêuticos/isolamento & purificação , Proteínas/administração & dosagem , Proteínas/química , Compostos de Amônio Quaternário/isolamento & purificação , Propriedades de Superfície
4.
Int J Pharm ; 250(1): 215-26, 2003 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-12480287

RESUMO

Chitosan nanoparticles (CS NP) with various formations were produced based on ionic gelation process of tripolyphosphate (TPP) and chitosan. They were examined with diameter 20-200 nm and spherical shape using TEM. FTIR confirmed tripolyphosphoric groups of TPP linked with ammonium groups of chitosan in the nanoparticles. Factors affecting delivery properties of bovine serum albumin (BSA) as model protein have been tested, they included molecular weight (Mw) and deacetylation degree (DD) of chitosan, the concentration of chitosan and initial BSA, and the presence of polyethylene glycol (PEG) in encapsulation medium. Increasing Mws of chitosan from 10 to 210 kDa, BSA encapsulation efficiency was enhanced about two times, BSA total release in PBS (phosphate buffer saline) pH 7.4 in 8 days was reduced from 73.9 to 17.6%. Increasing DD from 75.5 to 92% promoted slightly the encapsulation efficiency and decelerated the release rate. The encapsulation efficiency was highly decreased by increase of initial BSA and chitosan concentration; higher loading capacity of BSA speeded the BSA release from the nanoparticles. Adding PEG hindered the BSA encapsulation and accelerated the release rate.


Assuntos
Quitina/análogos & derivados , Quitina/administração & dosagem , Quitina/química , Sistemas de Liberação de Medicamentos , Soroalbumina Bovina/administração & dosagem , Acetilação , Quitosana , Peso Molecular , Polietilenoglicóis/administração & dosagem , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Biomed Mater Res A ; 87(1): 52-61, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18080310

RESUMO

Hydroxypropyl chitosan (HPCS), a water-soluble chitosan derivate, was modified by introducing photoreactive azide groups (4-azidobenzoic acid, Az-) to the amino groups of HPCS, resulting in a photocrosslinkable Az-HPCS. Novel porous chitosan scaffolds thus were fabricated by ultraviolet (UV) light irradiation of Az-HPCS aqueous solutions. Fourier transform infrared spectroscopy, scanning electron microscopy, measurement of pore size and porosity, mechanical test, swelling test, in vitro biodegradation determination were used to analyze the effects of degree of substitution (DS) of Az-groups on the properties of the scaffolds. When DS of Az-groups increased from 2.8% to 5.6%, we found that (i) the pore size of Az-HPCS scaffolds increased by about twofold and the porosity increased slightly, probably due to more N(2) released from the crosslinking reaction with the increase of DS; (ii) both the tensile stress and strain increased by about threefold, relating to the increase of joint points, pore size, and porosity at a relative high DS; (iii) the swelling ratio and degradation rate decreased with the increase of Az-DS, because of the forming of a more compact network structure. Preliminary data of cell culture on Az-HPCS scaffold suggested its potential applicability for tissue engineering.


Assuntos
Azidas/química , Quitosana/análogos & derivados , Quitosana/química , Raios Ultravioleta , Animais , Materiais Biocompatíveis/química , Biodegradação Ambiental , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Osteoblastos/citologia , Fotoquímica , Porosidade , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA