Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Blood Purif ; 53(2): 123-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37939684

RESUMO

INTRODUCTION: The removal of low- and medium-molecular-weight proteins has been improved with online hemodiafiltration (OL-HDF) and hemodialysis using high-flux membranes; however, the outcomes of patients with end-stage kidney disease (ESKD) undergoing dialysis treatment are still worse than in the general population. α1-Microglobulin (α1-m), with a molecular weight of 33,000 Da, may contribute to dialysis-related disorders and mortality. However, the removal is insufficient even with current OL-HDF using the polysulfone (PS) membrane, which is common in Japan. Polymethylmethacrylate (PMMA) membranes can remove medium- to high-molecular-weight proteins by adsorption. This study aimed to assess the efficacy of removing medium- to high-molecular-weight proteins, such as α1-m and ß2-microglobulin (ß2-m), through post-dilution OL-HDF with PMMA (Post-PMMA). The assessment was conducted in comparison to pre-dilution OL-HDF with PS (Pre-PS), using an open-label, single-arm study. METHODS: Seven patients with ESKD on Pre-PS underwent Post-PMMA with replacement volume of 30 mL/min (low flow) and 50 mL/min (high flow). Clearance and removal rates of α1-m, ß2-m, small molecules, inflammatory cytokines, and albumin were measured at 60 and 240 min of treatment. RESULTS: Clearance rates of α1-m at 60 min were -2.8 ± 5.2 mL/min with Pre-PS, -0.4 ± 2.6 mL/min with Post-PMMA (low), and 0.6 ± 3.4 mL/min with Post-PMMA (high). The removal rate of α1-m was higher in Post-PMMA than that in Pre-HDF-PS (Post-PMMA [high] 17.7 ± 5.9%, Post-PMMA [low] 15.0 ± 5.6%, and Pre-PS 4.1 ± 5.5%). Adsorption clearance of ß2-m was increased with Post-PMMA. Albumin leakage in Post-PMMA was not higher than that in Pre-PS. CONCLUSION: The removal rate of α1-m with Post-PMMA was higher than that with Pre-PS. The PMMA membrane adsorbed ß2-m, suggesting the removal effect of medium- to high-molecular-weight proteins by the adsorption method. Since Post-PMMA effectively removes α1-m without excessive albumin leakage, it will be useful for patients with ESKD, especially those with a poor nutritional status.


Assuntos
Hemodiafiltração , Falência Renal Crônica , Polímeros , Sulfonas , Humanos , Hemodiafiltração/métodos , Polimetil Metacrilato , Microglobulina beta-2 , Estudos Prospectivos , Diálise Renal/métodos , Falência Renal Crônica/terapia , Albuminas
2.
Artif Organs ; 42(1): 88-93, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28703401

RESUMO

An accumulation of protein-bound uremic toxins (PBUTs) is one of major reasons for development of uremia-related complications. We examined the PBUT removal ability of a hexadecyl-immobilized cellulose bead (HICB)-containing column for patients undergoing hemodialysis. Adsorption of indoxyl sulfate (IS), a representative PBUT, to HICBs was examined in vitro. The HICB column was used in patients undergoing hemodialysis for direct hemoperfusion with a regular hemodialyzer. The serum IS, indole acetic acid (IAA), phenyl sulfate (PhS), and p-cresyl sulfate (PCS) levels were measured before and after passing the column. HICBs adsorbed protein-free (free) IS in a dose- and time-dependent manner in vitro (55.4 ± 1.4% adsorption of 1 millimolar, 251 µg/mL, IS for 1 h). In clinical studies, passing the HICB-containing column decreased the serum level of free IS, IAA, PhS, and PCS levels significantly (by 34.4 ± 30.0%, 34.8 ± 25.4%, 28.4 ± 18.0%, and 34.9 ± 22.1%, respectively), but not protein-bound toxins in maintenance hemodialysis patients. HICBs absorbed some amount of free PBUTs, but the clinical trial to use HICB column did not show effect to reduce serum PBUTs level in hemodialysis patients. Adsorption treatment by means of direct hemoperfusion with regular hemodialysis may become an attractive blood purification treatment to increase PBUT removal when more effective materials to adsorb PBUTs selectively will be developed.


Assuntos
Celulose/química , Hemoperfusão/métodos , Falência Renal Crônica/terapia , Diálise Renal/métodos , Toxinas Biológicas/química , Uremia/terapia , Adsorção , Idoso , Proteínas Sanguíneas/metabolismo , Cresóis/sangue , Cresóis/química , Cresóis/metabolismo , Cresóis/toxicidade , Estudos de Viabilidade , Feminino , Hemoperfusão/instrumentação , Humanos , Indicã/sangue , Indicã/química , Indicã/metabolismo , Indicã/toxicidade , Ácidos Indolacéticos/sangue , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/toxicidade , Falência Renal Crônica/sangue , Falência Renal Crônica/complicações , Masculino , Pessoa de Meia-Idade , Porosidade , Ligação Proteica , Diálise Renal/instrumentação , Albumina Sérica , Ésteres do Ácido Sulfúrico/sangue , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/metabolismo , Ésteres do Ácido Sulfúrico/toxicidade , Toxinas Biológicas/sangue , Toxinas Biológicas/metabolismo , Toxinas Biológicas/toxicidade , Uremia/sangue , Uremia/etiologia
3.
Amyloid ; 31(2): 105-115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38343068

RESUMO

BACKGROUND: Dialysis-related amyloidosis (DRA) is a severe complication in end-stage kidney disease (ESKD) patients undergoing long-term dialysis treatment, characterized by the deposition of ß2-microglobulin-related amyloids (Aß2M amyloid). To inhibit DRA progression, hexadecyl-immobilized cellulose bead (HICB) columns are employed to adsorb circulating ß2-microglobulin (ß2M). However, it is possible that the HICB also adsorbs other molecules involved in amyloidogenesis. METHODS: We enrolled 14 ESKD patients using HICB columns for DRA treatment; proteins were extracted from HICBs following treatment and identified using liquid chromatography-linked mass spectrometry. We measured the removal rate of these proteins and examined the effect of those molecules on Aß2M amyloid fibril formation in vitro. RESULTS: We identified 200 proteins adsorbed by HICBs. Of these, 21 were also detected in the amyloid deposits in the carpal tunnels of patients with DRA. After passing through the HICB column and hemodialyzer, the serum levels of proteins such as ß2M, lysozyme, angiogenin, complement factor D and matrix Gla protein were reduced. These proteins acted in the Aß2M amyloid fibril formation. CONCLUSIONS: HICBs adsorbed diverse proteins in ESKD patients with DRA, including those detected in amyloid lesions. Direct hemoperfusion utilizing HICBs may play a role in acting Aß2M amyloidogenesis by reducing the amyloid-related proteins.


Assuntos
Amiloidose , Celulose , Falência Renal Crônica , Proteômica , Diálise Renal , Microglobulina beta-2 , Humanos , Amiloidose/metabolismo , Amiloidose/sangue , Amiloidose/terapia , Diálise Renal/efeitos adversos , Masculino , Feminino , Microglobulina beta-2/metabolismo , Microglobulina beta-2/sangue , Proteômica/métodos , Idoso , Celulose/química , Pessoa de Meia-Idade , Adsorção , Falência Renal Crônica/terapia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/sangue , Espectrometria de Massas/métodos , Amiloide/metabolismo , Cromatografia Líquida
5.
Biochemistry ; 43(34): 11075-82, 2004 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-15323566

RESUMO

In beta(2)-microglobulin-related (Abeta2M) amyloidosis, partial unfolding of beta(2)-microglobulin (beta2-m) is believed to be prerequisite to its assembly into Abeta2M amyloid fibrils in vivo. Although low pH or 2,2,2-trifluoroethanol at a low concentration has been reported to induce partial unfolding of beta2-m and subsequent amyloid fibril formation in vitro, factors that induce them under near physiological conditions have not been determined. Using fluorescence spectroscopy with thioflavin T, circular dichroism spectroscopy, and electron microscopy, we here show that at low concentrations, sodium dodecyl sulfate (SDS) converts natively folded beta2-m monomers into partially folded, alpha-helix-containing conformers. Surprisingly, this results in the extension of Abeta2M amyloid fibrils at neutral pH, which could be explained basically by a first-order kinetic model. At low concentrations, SDS also stabilized the fibrils at neutral pH. These SDS effects were concentration-dependent and maximal at approximately 0.5 mM, around the critical micelle concentration of SDS (0.67 mM). As the concentration of SDS was increased above 1 mM, the alpha-helix content of beta2-m rose to approximately 10%, while the beta-sheet content decreased to approximately 20%, a change paralleled by a complete cessation of fibril extension and the destabilization of the fibrils. Detergents of other classes had no significant effect on the extension of fibrils. These findings are consistent with the hypothesis that in vivo, specific factors (e.g., phospholipids) that affect the conformation and stability of beta2-m and amyloid fibrils will have significant effects on the kinetics of Abeta2M fibril formation.


Assuntos
Amiloide/metabolismo , Dodecilsulfato de Sódio/farmacologia , Microglobulina beta-2/metabolismo , Amiloide/química , Amiloide/ultraestrutura , Dicroísmo Circular , Detergentes , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Micelas , Octoxinol , Polímeros/metabolismo , Conformação Proteica , Dobramento de Proteína , Compostos de Amônio Quaternário , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espectrometria de Fluorescência , Tensoativos/farmacologia , Microglobulina beta-2/química , Microglobulina beta-2/ultraestrutura
6.
Kidney Int ; 64(3): 1080-8, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12911560

RESUMO

BACKGROUND: Although several kinds of evidence suggest that glycosaminoglycans (GAGs) and proteoglycans (PGs) may contribute to the development of beta2-microglobulin-related (Abeta2m) amyloidosis, the precise roles of these molecules for the development of Abeta2m amyloidosis are poorly understood. METHODS: We investigated the effects of GAGs and PGs on the depolymerization of Abeta2m amyloid fibrils at a neutral pH, as well as on the formation of the fibrils at an acidic pH in vitro, using fluorescence spectroscopy with thioflavin T and electron microscopy. RESULTS: Depolymerization of Abeta2m amyloid fibrils at pH 7.5 at 37 degrees C was inhibited dose-dependently by the presence of some GAGs (heparin, dermatan sulfate, or heparan sulfate) or PGs (biglycan, decorin, or keratan sulfate proteoglycan). Electron microscopy revealed that a significant amount of Abeta2m amyloid fibrils remained in the reaction mixture with some lateral aggregation. Second, when monomeric beta2m was incubated with aggrecan, biglycan, decorin, or heparin at pH 2.5 at 37 degrees C for up to 21 days, the thioflavin T fluorescence increased depending on dose and time. Electron microscopy revealed the formation of rigid and straight fibrils similar to Abeta2m amyloid fibrils in beta2m incubated with biglycan for 21 days. CONCLUSION: These results suggest that some GAGs and PGs could enhance the deposition of Abeta2m amyloid fibrils in vivo, possibly by binding directly to the surface of the fibrils and stabilizing the conformation of beta2m in the fibrils, as well as by acting as a scaffold for the polymerization of beta2m into the fibrils.


Assuntos
Amiloide/metabolismo , Glicosaminoglicanos/fisiologia , Polímeros/metabolismo , Proteoglicanas/fisiologia , Microglobulina beta-2/metabolismo , Amiloide/ultraestrutura , Relação Dose-Resposta a Droga , Glicosaminoglicanos/administração & dosagem , Heparina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Proteoglicanas/administração & dosagem , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA