Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hum Evol ; 98: 66-75, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26601707

RESUMO

Determining the proximate causes of tooth wear remains a major focus of dental study. Here we compare the diets of three ring-tailed lemur (Lemur catta) populations and examine how different dietary components may contribute to patterns of wear-related tooth shape. Casts were made from dental impressions collected between 2003 and 2010 from lemurs in the gallery and spiny/mixed forests of the Bezá Mahafaly Special Reserve (BMSR; Parcels 1 and 2) and the spiny/mixed forests of Tsimanampesotse National Park (TNP), Madagascar. Tooth shape variables (occlusal relief and slope, angularity) were analyzed using dental topographic analysis. Focal observations and food mechanical properties (FMPs: toughness, hardness, elastic modulus) were conducted and tested, respectively, during wet and dry seasons from 2008 to 2012. We found that FMPs correlate with patterns of dental topography in these three populations. Specifically, food toughness and elastic modulus correlate with the dental variables, but hardness does not. Average food toughness and elastic modulus, but not hardness, are highest in BMSR Parcel 2, followed by BMSR Parcel 1 and TNP. Occlusal relief and slope, which serve as proxies for tooth wear, show the greatest wear in Parcel 2 and the least in TNP. Angularity is also more pronounced in TNP. Further, dental topographic patterns correspond to reliance on Tamarindus indica (tamarind) fruit. Both BMSR populations consume tamarind at high frequencies in the dry season, but the fruits are rare at TNP and only occasionally consumed. Thus, high seasonal tamarind consumption and its mechanical values help explain the low dental relief and slope among BMSR lemurs. By investigating the ecology of a single widespread species across a variety of habitats, we have been able to link specific components of diet to patterns of dental topography in this species. This provides a context for interpreting wear-related tooth shape changes more generally, illustrating that populations can develop different dental wear patterns resulting from a mix of intrinsic factors (thin enamel) and local conditions (food properties, frequency of consumption).


Assuntos
Dieta , Lemur/anatomia & histologia , Lemur/fisiologia , Dente/anatomia & histologia , Animais , Fenômenos Biomecânicos , Comportamento Alimentar , Análise de Alimentos , Madagáscar
2.
J Hum Evol ; 98: 103-118, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27542555

RESUMO

Substantial variation exists in the mechanical properties of foods consumed by primate species. This variation is known to influence food selection and ingestion among non-human primates, yet no large-scale comparative study has examined the relationships between food mechanical properties and feeding strategies. Here, we present comparative data on the Young's modulus and fracture toughness of natural foods in the diets of 31 primate species. We use these data to examine the relationships between food mechanical properties and dietary quality, body mass, and feeding time. We also examine the relationship between food mechanical properties and categorical concepts of diet that are often used to infer food mechanical properties. We found that traditional dietary categories, such as folivory and frugivory, did not faithfully track food mechanical properties. Additionally, our estimate of dietary quality was not significantly correlated with either toughness or Young's modulus. We found a complex relationship among food mechanical properties, body mass, and feeding time, with a potential interaction between median toughness and body mass. The relationship between mean toughness and feeding time is straightforward: feeding time increases as toughness increases. However, when considering median toughness, the relationship with feeding time may depend upon body mass, such that smaller primates increase their feeding time in response to an increase in median dietary toughness, whereas larger primates may feed for shorter periods of time as toughness increases. Our results emphasize the need for additional studies quantifying the mechanical and chemical properties of primate diets so that they may be meaningfully compared to research on feeding behavior and jaw morphology.


Assuntos
Dieta , Comportamento Alimentar , Análise de Alimentos , Mastigação , Primatas/fisiologia , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Feminino , Masculino
3.
Am J Biol Anthropol ; 184(1): e24916, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441408

RESUMO

OBJECTIVES: Studies on oral processing are often snapshots of behaviors that examine feeding through individual bouts. In this study, we expand on our previous work comparing bite/chew variables per feeding bout to summed daily biting, chewing, and food intake to interpret loading that could have potential morphological effects. MATERIALS AND METHODS: We observed sympatric Lemur catta and Propithecus verreauxi over two field seasons in the dry forest of Bezà Mahafaly Special Reserve in southwestern Madagascar. Bite and chew rates determined from videos filmed during observations were multiplied with time spent feeding on specific foods during focal follows to calculate daily values for each feeding bout. Food mechanical properties (FMPs) were tested on dietary items with a portable tester. We contrasted daily bite/chew numbers and intake with FMPs, species, season, and food shape. RESULTS: Daily bite and chew numbers increased with maximum, but not average, food toughness. Daily intake decreased with average and maximum toughness. Season had a strong effect on daily bites and chews, but not on intake. Food shape influenced intake and total bite and chew numbers. The lemur species did not differ in our models. DISCUSSION: Maximum food toughness impacted feeding behaviors and intake, which is consistent with higher loads having a greater effect on morphology. In contrast to feeding per bout, cumulative biting and chewing did not differ between species; taking feeding frequency into consideration affects interpretation of jaw loading. Finally, biting, as much as chewing, may generate strains that impact morphology.


Assuntos
Lemur , Lemuridae , Succinimidas , Animais , Lemur/anatomia & histologia , Dieta , Alimentos
4.
Am J Biol Anthropol ; 182(1): 45-58, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431971

RESUMO

OBJECTIVES: The link between diet and the masticatory apparatus in primates is complex. We investigated how food mechanical properties (FMPs) and food geometry affect feeding behaviors and subsequent jaw loading. We compared oral processing in two sympatric lemur species with distinct diets and mandibular morphologies. MATERIALS AND METHODS: All-day focal follows of Lemur catta (Lc) and Propithecus verreauxi (Pv) were conducted in both the dry and wet seasons at Beza Mahafaly Special Reserve. We collected activity budget data, filmed feeding bouts, and collected food items to measure their mechanical properties with an FLS-1 portable tester. Feeding videos for the top food items they spent the most time consuming were analyzed frame-by-frame to assess bite and chew numbers and rates. RESULTS: Lc bite more and at a slower rate on tougher (maximum) foods, chew more for tougher (average) foods, and chew less for stiffer leaves. Pv initially increase chew number for tougher (average) foods, but their behavior is less affected as food toughness increases. Pv chew less and more slowly but spend more of the day feeding than Lc. Additionally, they have a tougher (maximum) diet than Lc. DISCUSSION: Lc adjust their feeding behaviors depending on the FMPs of their top food items, while Pv feed more consistently. The more robust masticatory apparatus of Pv may not require them to adjust their feeding behaviors for more mechanically challenging foods. Furthermore, the two species show distinct differences in chewing. Exploring chewing on a daily scale could aid in understanding its impact on the loading of the masticatory apparatus.


Assuntos
Lemur , Lemuridae , Animais , Dieta , Comportamento Alimentar
5.
Am J Phys Anthropol ; 148(2): 205-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22610896

RESUMO

Knowledge of dietary mechanical properties can be informative about physical consequences to consumers during ingestion and mastication. In this article, we examine how Tamarindus indica fruits can affect dental morphology in a population of ring-tailed lemurs (Lemur catta) at Beza Mahafaly special reserve in southwestern Madagascar. Ring-tailed lemurs in tamarind dominated gallery forests exhibit extreme wear and tooth loss on their postcanine dentition that has been related to processing T. indica fruits. We measured and compared mechanical properties of individual food parts in the diet of ring-tailed lemurs in different seasons in 1999-2000, 2008, and 2010. Fracture toughness, hardness, and modulus of foods were measured with a portable mechanical tester. The ripe fruits of T. indica are indeed the toughest and hardest foods ingested by the lemurs. In addition, they are among the largest foods consumed, require high numbers of ingestive bites to process, and are the most frequently eaten by volume. During controlled cutting tests of the ripe fruit shell, multiple runaway side cracks form alongside the cut. Similarly, the lemurs repeatedly bite the ripe shell during feeding and thereby introduce multiple cracks that eventually fragment the shell. Studies of enamel microstructure (e.g., Lucas et al.: BioEssays 30 (2008) 374-385; Campbell et al., 2011) advance the idea that the thin enamel of ring-tailed lemur teeth is susceptible to substantial micro-cracking that rapidly erodes the teeth. We conclude that micro-cracking from repeated loads, in combination with the mechanical and physical properties of the fruit, is primarily responsible for the observed dental damage.


Assuntos
Comportamento Alimentar/fisiologia , Frutas/química , Lemur/fisiologia , Animais , Antropologia Física , Fenômenos Biomecânicos , Esmalte Dentário/anatomia & histologia , Esmalte Dentário/fisiologia , Dureza , Madagáscar , Dente Molar/anatomia & histologia , Dente Molar/fisiologia , Estatísticas não Paramétricas , Tamarindus/química , Gravação em Vídeo
6.
Am J Primatol ; 70(4): 363-71, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18157845

RESUMO

Chemical deterioration of teeth is common among modern humans, and has been suggested for some extinct primates. Dental erosion caused by acidic foods may also obscure microwear signals of mechanical food properties. Ring-tailed lemurs at the Beza Mahafaly Special Reserve (BMSR), Madagascar, display frequent severe tooth wear and subsequent tooth loss. In contrast, sympatric Verreaux's sifaka display far less tooth wear and infrequent tooth loss, despite both species regularly consuming acidic tamarind fruit. We investigated the potential impact of dietary acidity on tooth wear, collecting data on salivary pH from both species, as well as salivary pH from ring-tailed lemurs at Tsimanampesotse National Park, Madagascar. We also collected salivary pH data from ring-tailed lemurs at the Indianapolis Zoo, none of which had eaten for at least 12 hr before data collection. Mean salivary pH for the BMSR ring-tailed lemurs (8.098, n=41, SD=0.550) was significantly more alkaline than Verreaux's sifaka (7.481, n=26, SD=0.458). The mean salivary pH of BMSR (8.098) and Tsimanampesotse (8.080, n=25, SD=0.746) ring-tailed lemurs did not differ significantly. Salivary pH for the Indianapolis Zoo sample (8.125, n=16, SD=0.289) did not differ significantly from either the BMSR or Tsimanampesotse ring-tailed lemurs, but was significantly more alkaline than the BMSR Verreaux's sifaka sample. Regardless of the time between feeding and collection of pH data (from several minutes to nearly 1 hr), salivary pH for each wild lemur was above the "critical" pH of 5.5, below which enamel demineralization occurs. Thus, the high pH of lemur saliva suggests a strong buffering capacity, indicating the impact of acidic foods on dental wear is short-lived, likely having a limited effect. However, tannins in tamarind fruit may increase friction between teeth, thereby increasing attrition and wear in lemurs. These data also suggest that salivary pH varies between lemur species, corresponding to broad dietary categories.


Assuntos
Lemuridae/metabolismo , Saliva/química , Strepsirhini/metabolismo , Erosão Dentária/veterinária , Análise de Variância , Animais , Dieta , Concentração de Íons de Hidrogênio , Lemur , Madagáscar , Fatores de Tempo , Erosão Dentária/metabolismo , Erosão Dentária/patologia
7.
Am J Phys Anthropol ; 121(2): 125-33, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12740956

RESUMO

This study of two lemur species (Lemur catta and Propithecus v. verreauxi) in Madagascar combines observations of food procurement and initial food placement in the mouth with comparisons to food toughness and external properties. Food toughness was hypothesized to play a decisive role in determining food placement during ingestion. It was found that tougher foods are generally ingested on the postcanines for all foods eaten. However, when leaves and fruits are analyzed separately, food size and shape, represented here by mass and food type, are more reliable predictors of initial food placement. Larger leaves and bulkier fruits and stalks are ingested posteriorly. Leaf toughness is not related to leaf size, though the toughness and size of the most commonly eaten fruits are correlated. Furthermore, ingestive food toughness, which is the maximum toughness, and "average" food toughness may make different mechanical demands on the masticatory apparatus that have consequences for jaw morphology.


Assuntos
Comportamento Alimentar/fisiologia , Lemur/fisiologia , Mastigação/fisiologia , Animais , Dentição , Plantas Comestíveis , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA