Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Nanobiotechnology ; 19(1): 219, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281545

RESUMO

Chemo-photothermal therapy based on nanoparticles has emerged as a promising strategy for cancer treatment. However, its therapeutic efficacy and application potential are largely subjected to the uncontrollability and biotoxicity of functional nanoplatforms. Herein, a novel biocompatible and biodegradable metal organic framework (MOF), which was constructed by growing crystalline zeolitic imidazolate framework-8 on gold nanoroad (Au@ZIF-8), was designed and fabricated for efficient drug loading and controlled release. Owing to the large surface area and guest-matching pore size of ZIF-8, doxorubicin (DOX) was successfully loaded into the Au@ZIF-8 with a high drug loading efficiency of ~ 37%. Under NIR light or weakly acidic environment, the ZIF-8 layer was quickly degraded, which resulted in an on-demand drug release in tumour site. More importantly, under the irradiation of near infrared (NIR) laser, highly efficient cancer treatment was achieved in both in vitro cell experiment and in vivo tumour-bearing nude mice experiment due to the synergistic effect of photothermal (PTT) therapy and chemotherapy. In addition, the in vivo study revealed the good biocompatibility of Au@ZIF-8. This work robustly suggested that Au@ZIF-8 could be further explored as a drug delivery system for chemo-photothermal synergistic therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas Metálicas/química , Estruturas Metalorgânicas/química , Nanotubos/química , Terapia Fototérmica/métodos , Animais , Materiais Biocompatíveis , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Células HeLa , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Preparações Farmacêuticas
2.
J Nanobiotechnology ; 19(1): 137, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985525

RESUMO

Photothermal therapy has attracted extensive attentions in cancer treatment due to its precise spatial-temporal controllability, minimal invasiveness, and negligible side effects. However, two major deficiencies, unsatisfactory heat conversion efficiency and limited tissue penetration depth, hugely impeded its clinical application. In this work, hollow carbon nanosphere modified with polyethylene glycol-graft-polyethylenimine (HPP) was elaborately synthesized. The synthesized HPP owns outstanding physical properties as a photothermal agent, such as uniform core-shell structure, good biocompatibility and excellent heat conversion efficiency. Upon NIR-II laser irradiation, the intracellular HPP shows excellent photothermal activity towards cancer cell killing. In addition, depending on the large internal cavity of HPP, the extended biomedical application as drug carrier was also demonstrated. In general, the synthesized HPP holds a great potential in NIR-II laser-activated cancer photothermal therapy.


Assuntos
Materiais Biocompatíveis , Carbono/química , Nanosferas/química , Fototerapia/métodos , Terapia Fototérmica , Animais , Portadores de Fármacos/química , Humanos , Neoplasias/terapia , Polietilenoglicóis
3.
Small ; 12(4): 534-46, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26663023

RESUMO

In this work, a facile aqueous synthesis method is optimized to produce Mn:ZnSe/ZnS/ZnMnS sandwiched quantum dots (SQDs). In this core-shell co-doped system, paramagnetic Mn(2+) ions are introduced as core and shell dopants to generate Mn phosphorescence and enhance the magnetic resonance imaging signal, respectively. T1 relaxivity of the nanoparticles can be improved and manipulated by raising the shell doping level. Steady state and time-resolved optical measurements suggest that, after high level shell doping, Mn phosphorescence of the core can be sustained by the sandwiched ZnS shell. Because the SQDs are free of toxic heavy metal compositions, excellent biocompatibility of the prepared nanocrystals is verified by in vitro MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To explore the theranostic applications of SQDs, liposome-SQD assemblies are prepared and used for ex vivo optical and magnetic resonance imaging. In addition, these engineered SQDs as nanocarrier for gene delivery in therapy of Panc-1 cancer cells are employed. The therapeutic effects of the nanocrystals formulation are confirmed by gene expression analysis and cell viability assay.


Assuntos
Compostos de Manganês/química , Manganês/química , Imagem Multimodal/métodos , Pontos Quânticos/química , Compostos de Selênio/química , Sulfetos/química , Nanomedicina Teranóstica/métodos , Compostos de Zinco/química , Linhagem Celular Tumoral , Humanos , Hidrodinâmica , Lipossomos , Luminescência , Imageamento por Ressonância Magnética , Microscopia de Fluorescência , Sondas Moleculares/química , Tamanho da Partícula , Pontos Quânticos/ultraestrutura , RNA Interferente Pequeno/metabolismo , Espectrofotometria Ultravioleta , Transfecção
4.
Adv Healthc Mater ; 13(3): e2302409, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964681

RESUMO

In recent years, messenger RNA (mRNA) vaccines have exhibited great potential to replace conventional vaccines owing to their low risk of insertional mutagenesis, safety and efficacy, rapid and scalable production, and low-cost manufacturing. With the great achievements of chemical modification and sequence optimization methods of mRNA, the key to the success of mRNA vaccines is strictly dependent on safe and efficient gene vectors. Among various delivery platforms, non-viral mRNA vectors could represent perfect choices for future clinical translation regarding their safety, sufficient packaging capability, low immunogenicity, and versatility. In this review, the recent progress in the development of non-viral mRNA vectors is focused on. Various organic vectors including lipid nanoparticles (LNPs), polymers, peptides, and exosomes for efficient mRNA delivery are presented and summarized. Furthermore, the latest advances in clinical trials of mRNA vaccines are described. Finally, the current challenges and future possibilities for the clinical translation of these promising mRNA vectors are also discussed.


Assuntos
Nanopartículas , Vacinas , Vacinas de mRNA , Vetores Genéticos , RNA Mensageiro/genética , Polímeros
5.
Macromol Biosci ; 24(4): e2300362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150293

RESUMO

RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.


Assuntos
Portadores de Fármacos , Nanopartículas , RNA Interferente Pequeno/química , Interferência de RNA , Portadores de Fármacos/química , Terapia Genética , Polímeros/química , Lipídeos/química , Nanopartículas/química
6.
Small Methods ; 5(2): e2000920, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927892

RESUMO

The size and structural control of particulate carriers for imaging agents and therapeutics are constant themes in designing smart delivery systems. This is motivated by the causal relationship between geometric parameters and functionalities of delivery vehicles. Here, both in vitro and in vivo, the controlling factors for cytotoxicity, photothermal, and anti-tumor effects of biodegradable magnesium@poly(lactic-co-glycolic acid (Mg@PLGA) particulate carriers with different sizes and shell thicknesses are investigated. Mg@PLGA microspheres fabricated by microfluidic emulsification are shown to have higher Mg encapsulation efficiency, 87%, than nanospheres by ultrasonic homogenization, 50%. The photothermal and anti-tumor effects of Mg@PLGA spheres are found to be dictated by their Mg content, irrelevant to size and structural features, as demonstrated in both in vitro cell assays and in vivo mice models. These results also provide important implications for designing and fabricating stimuli-responsive drug delivery vehicles.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/terapia , Magnésio/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Magnésio/química , Magnésio/farmacologia , Camundongos , Técnicas Analíticas Microfluídicas , Microesferas , Nanopartículas , Tamanho da Partícula , Fototerapia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Adv Healthc Mater ; 8(8): e1801318, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30829008

RESUMO

Therapeutic strategy based on the restoration of tumor suppressor-microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester-based vectors (PEG-BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG-BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG-BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG-BCPV-based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG-BCPVs as the carrier should be a promising modality for combating HCC.


Assuntos
Plásticos Biodegradáveis/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/metabolismo , MicroRNAs , Carcinoma Hepatocelular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Hep G2 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Polietilenoglicóis/química
8.
ACS Appl Mater Interfaces ; 11(3): 2768-2781, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30589254

RESUMO

In this work, we reported the synthesis of an engineered novel nanocarrier composed of biodegradable charged polyester vectors (BCPVs) and graphene quantum dots (GQDs) for pancreatic cancer (MiaPaCa-2 cells) therapy applications. Such a nanocarrier was utilized to co-load doxorubicin (DOX) and small interfering ribonucleic acid (siRNA), resulting in the formation of GQD/DOX/BCPV/siRNA nanocomplexes. The resulting nanocomplexes have demonstrated high stability in physiologically mimicking media, excellent K-ras downregulation activity, and effective bioactivity inhibition for MiaPaCa-2 cells. More importantly, laser light was used to generate heat for the nanocomplexes via the photothermal effect to damage the cells, which was further employed to trigger the release of payloads from the nanocomplexes. Such triggered release function greatly enhanced the anticancer activity of the nanocomplexes. Preliminary colony formation study also suggested that GQD/DOX/BCPV/siRNA nanocomplexes are qualified carrier candidates in subsequent in vivo tests.


Assuntos
Grafite/química , Nanopartículas/química , Neoplasias Pancreáticas/terapia , Fototerapia , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Grafite/uso terapêutico , Humanos , Luz , Neoplasias Pancreáticas/patologia , Polímeros/química , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico
9.
Nanoscale ; 8(17): 9405-16, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27092903

RESUMO

First-line therapy of chronic myelogenous leukemia (CML) has always involved the use of BCR-ABL tyrosine-kinase inhibitors which is associated with an abnormal chromosome called Philadelphia chromosome. Although the overall survival rate has been improved by the current therapeutic regime, the presence of resistance has resulted in limited efficacy. In this study, an RNA interference (RNAi)-based therapeutic regime is proposed with the aim to knockdown the BCR-ABL hybrid oncogene using small interfering RNA (siRNA). The siRNA transfection rates have usually been limited due to the declining contact probability among polyplexes and the non-adherent nature of leukemic cells. Our work aims at addressing this limitation by using a biodegradable charged polyester-based vector (BCPV) as a nanocarrier for the delivery of BCR-ABL-specific siRNA to the suspension culture of a K562 CML cell line. BCR-ABL siRNAs were encapsulated in the BCPVs by electrostatic force. Cell internalization was facilitated by the BCPV and assessed by confocal microscopy and flow cytometry. The regulation of the BCR-ABL level in K562 cells as a result of RNAi was analyzed by real-time polymerase chain reaction (RT-PCR). We observed that BCPV was able to form stable nanoplexes with siRNA molecules, even in the presence of fetal bovine serum (FBS), and successfully assisted in vitro siRNA transfection in the non-adherent K562 cells. As a consequence of downregulation of BCR-ABL, BCPV-siRNA nanoplexes inhibited cell proliferation and promoted cell apoptosis. All results were compared with a commercial transfection reagent, Lipofectamine2000™, which served as a positive control. More importantly, this class of non-viral vector exhibits biodegradable features and negligible cytotoxicity, thus providing a versatile platform to deliver siRNA to non-adherent leukemia cells with high transfection efficiency by effectively overcoming extra- and intra-cellular barriers. Due to the excellent in vitro transfection results from BCPV-siRNA, a newly developed biodegradable transfection agent, BCPV, is being probed for transfection performance in an animal model.


Assuntos
Proteínas de Fusão bcr-abl/genética , Técnicas de Silenciamento de Genes , Vetores Genéticos , RNA Interferente Pequeno , Transfecção , Apoptose , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva , Poliésteres
10.
Int J Nanomedicine ; 10: 5771-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26396511

RESUMO

In this study, multifunctional hybrid-polymeric nanoparticles were prepared for the treatment of cultured multicellular tumor spheroids (MCTS) of the PANC-1 and MIA PaCa-2 pancreatic carcinoma cell lines. To synthesize the hybrid-polymeric nanoparticles, the poly lactic-co-glycolic acid core of the particles was loaded with Rhodamine 6G dye and the chemotherapeutic agent, Paclitaxel, was incorporated into the outer phospholipid layer. The surface of the nanoparticles was coated with gadolinium chelates for magnetic resonance imaging applications. This engineered nanoparticle formulation was found to be suitable for use in guided imaging therapy. Specifically, we investigated the size-dependent therapeutic response and the uptake of nanoparticles that were 65 nm, 85 nm, and 110 nm in size in the MCTS of the two pancreatic cancer cell lines used. After 24 hours of treatment, the MCTS of both PANC-1 and MIA PaCa-2 cell lines showed an average increase in the uptake of 18.4% for both 65 nm and 85 nm nanoparticles and 24.8% for 110 nm nanoparticles. Furthermore, the studies on therapeutic effects showed that particle size had a slight influence on the overall effectiveness of the formulation. In the MCTS of the MIA PaCa-2 cell line, 65 nm nanoparticles were found to produce the greatest therapeutic effect, whereas 12.8% of cells were apoptotic of which 11.4% of cells were apoptotic for 85 nm nanoparticles and 9.79% for 110 nm nanoparticles. Finally, the study conducted in vivo revealed the importance of nanoparticle size selection for the effective delivery of drug formulations to the tumors. In agreement with our in vitro results, excellent uptake and retention were found in the tumors of MIA PaCa-2 tumor-bearing mice treated with 110 nm nanoparticles.


Assuntos
Sistemas de Liberação de Medicamentos , Imagem Multimodal , Polímeros/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Paclitaxel/farmacologia , Neoplasias Pancreáticas/terapia , Tamanho da Partícula
11.
Biomater Sci ; 3(1): 192-202, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26214202

RESUMO

In this work, we demonstrate the use of manganese doped zinc selenide QDs (Mn:ZnSe d-dots) for gene delivery in vitro. Specifically, the d-dots were prepared as nanoplexes for facilitating the intracellular delivery of small interfering RNA (siRNA) molecules to pancreatic cancer cells (Panc-1), thereby inducing sequence-specific silencing of oncogenic K-Ras mutations in pancreatic carcinoma. For nanoplex preparation, a layer-by-layer (LBL) assembling method was adopted to modify the d-dot surface with cationic polymer poly(allylamine hydrochloride) (PAH) or polyethylenimine (PEI) for generating positive surface potential for complexing with K-Ras siRNA molecules. Owing to the unique and stable PL properties of the d-dots, siRNA transfection and the subsequent intracellular release profile from the d-dot/polymer-siRNA nanoplexes were monitored by fluorescence imaging. Quantitative results from flow cytometry study suggested that a high gene transfection efficiency was achieved. The expression of the mutant K-Ras mRNA in Panc-1 cells was observed to be significantly suppressed upon transfecting them with the nanoplex formulation. More importantly, cell viability studies showed that the d-dot/PAH nanoplexes were biocompatible and non-toxic even at concentrations as high as 160 µg mL(-1). Furthermore, the amine-terminated surface could be further modified to obtain multiple bio-functions. Based on these results, we envision that the designed d-dot nanoplexes can be developed as a flexible nanoplatform for both fundamental and practical clinical research applications.


Assuntos
Terapia Genética/métodos , Manganês/química , Neoplasias Pancreáticas/genética , Poliaminas/química , Pontos Quânticos/química , RNA Interferente Pequeno/genética , Compostos de Selênio/química , Compostos de Zinco/química , Linhagem Celular Tumoral , Inativação Gênica , Técnicas de Transferência de Genes , Humanos , Neoplasias Pancreáticas/química , Polietilenoimina/química , Polietilenoimina/metabolismo , RNA Interferente Pequeno/química , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA