Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 448: 130812, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709735

RESUMO

Selenium (Se) can reduce cadmium (Cd) uptake/translocation via regulating pectins, hemicelluloses and lignins of plant root cell walls, but the detailed molecular mechanisms are not clear. In this study, six hydroponic experiments were set up to explore the relationships of uptake/translocation inhibition of Cd by selenite (Se(IV)) with cell wall component (CWC) synthesis and/or interactions. Cd and Se was supplied (alone or combinedly) at 1.0 mg L-1 and 0.5 mg L-1, respectively, with the treatment without Cd and Se as the control. When compared to the Cd1 treatment, the Se0.5Cd1 treatment 1) significantly increased total sugar concentrations in pectins, hemicelluloses and callose, suggesting an enhanced capacity of binding Cd or blocking Cd translocation; 2) stimulated the deposition of Casparian strips (CS) in root endodermis and exodermis to block Cd translocation; 3) stimulated the release of C-O-C (-OH- or -O-) and CO (carboxyl, carbonyl, or amide) to combine Cd; 4) regulated differential expression genes (DEGs) and metabolites (DMs) correlated with synthesis and/or interactions of CWSs to affect cell wall net structure to affect root cell division, subsequent root morphology and finally elemental uptake; and 5) stimulated de-methylesterification of pectins via reducing expression abundances of many DMs and DEGs in the Yang Cycle to reduce supply of methyls to homogalacturonan, and regulated gene expressions of pectin methylesterase to release carboxyls to combine Cd; and 6) down-regulated gene expressions associated with Cd uptake/translocation.


Assuntos
Oryza , Selênio , Poluentes do Solo , Cádmio/metabolismo , Oryza/metabolismo , Lignina/metabolismo , Ácido Selenioso/metabolismo , Poluentes do Solo/metabolismo , Pectinas/química , Parede Celular/metabolismo , Selênio/metabolismo , Raízes de Plantas/metabolismo
2.
Ying Yong Sheng Tai Xue Bao ; 16(4): 698-702, 2005 Apr.
Artigo em Zh | MEDLINE | ID: mdl-16011170

RESUMO

In this paper, one hundred percent of condensed sulfate paper pulp waste liquid was used as the raw material of adhesive, and the activation of its lignin as well as the improving effects of phenol formaldehyde resin and polyfunctional aqueous polymer isocyanate (PAPI) were studied. The results showed that adding formaldehyde to the waste liquid could increase the reactivity of contained lignin, and adding 30% phenol formaldehyde resin or 20% PAPI could make the waste liquid in place of pure phenol formaldehyde resin for producing class I plywood. Furthermore, the cost could be reduced by 55.5% and 49.0%, respectively, in comparing with pure phenol formaldehyde resin. This approach fully used the organic resources in paper pulp waste liquid, reduced environment pollution at the same time, and had unexceptionable economic, social and ecological benefits. The feasibility of preparing adhesives from paper pulp waste liquid was also analyzed by infrared spectrum.


Assuntos
Formaldeído/química , Resíduos Industriais , Lignina/química , Papel , Fenóis/química , Polímeros/química , Eliminação de Resíduos , Isocianatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA