RESUMO
Artesunic acid (ASH), an antimalarial drug, has low oral bioavailability due to its low aqueous solubility. To overcome this problem, artesunate (AS) was intercalated into zinc basic salt (ZBS) via co-precipitation. AS was immobilized with a tilted double layer arrangement, which was also confirmed by XRD and 1-D electron density mapping. In order to decrease the release rate of AS under gastrointestinal conditions and to simultaneously increase the release rate of AS under intestinal conditions, ZBS-AS was coated with EUDRAGIT L100 (ZBS-AS-L100). Finally, we performed an in-vivo pharmacokinetic study to compare the oral bioavailability of AS of ZBS-AS-L100 with that of ASH. Surprisingly, it was found that the former is 5.5â times greater than the latter due to an enhanced solubility of AS thanks to the ternary hybridization with ZBS and EUDRAGIT L100. Therefore, the present ZBS-AS-L100 system has a great potential as a novel antimalarial drug formulation with pH selectivity and enhanced bioavailability.
Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacocinética , Artemisininas/química , Artemisininas/farmacocinética , Polímeros/química , Succinatos/química , Succinatos/farmacocinética , Animais , Disponibilidade Biológica , Precipitação Química , Concentração de Íons de Hidrogênio , Masculino , Ácidos Polimetacrílicos , Ratos , Ratos Sprague-Dawley , Solubilidade , Compostos de ZincoRESUMO
For transdermal drug delivery, we prepared a drug-inorganic nanohybrid (FB-LDH) by intercalating a transdermal model drug, flurbiprofen (FB), into the layered double hydroxides (LDHs) via coprecipitation reaction. The X-ray diffraction patterns and FT-IR spectra of the FB-LDH indicated that the FB molecules were successfully intercalated via electrostatic interaction within the LDH lattices. The in vitro drug release revealed that the Eudragit(®) S-100 in release media could facilitate the drug out-diffusion by effectively replacing the intercalated drug and also enlarging the lattice spacing of the FB-LDH. In this work, a hydrophobic gel suspension of the FB-LDH was suggested as a transdermal controlled delivery formulation, where the suspensions were mixed with varying amounts of Eudragit(®) S-100 aqueous solution. The Frantz diffusion cell experiments using mouse full-skins showed that a lag time and steady-state flux of the drug could be controlled from 12.8h and 3.28µgcm(-2)h(-1) to less than 1h and 14.57µgcm(-2)h(-1), respectively, by increasing the mass fraction of Eudragit(®) S-100 solution in gel suspensions from 0% to 20% (w/w), respectively. Therefore, we conclude gel formulation of the FB-LDH have a potential for transdermal controlled drug delivery.