Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 29(2): 546-558, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29346731

RESUMO

PENAO (4-(N-(S-penicillaminylacetyl)amino) phenylarsonous acid), which is a mitochondria inhibitor that reacts with adenine nucleotide translocator (ANT), is currently being trialed in patients with solid tumors. To increase the stability of the drug, the formation of nanoparticles has been proposed. Herein, the direct synthesis of polymeric micelles based on the anticancer drug PENAO is presented. PENAO is readily available for amidation reaction to form PENAO MA (4-(N-(S-penicillaminylacetyl) amino) phenylarsonous acid methacrylamide) which undergoes RAFT (reversible addition-fragmentation chain transfer) polymerization with poly(ethylene glycol methyl ether methacrylate) as comonomer and poly(methyl methacrylate) (pMMA) as chain transfer agent, resulting in p(MMA)-b-p(PEG-co-PENAO) block copolymers with 3-15 wt % of PENAO MA. The different block copolymers self-assembled into micelle structures, varying in size and stability (Dh = 84-234 nm, cmc = 0.5-82 µg mol-1) depending on the hydrophilic to hydrophobic ratio of the polymer blocks and the amount of drug in the corona of the particle. The more stable micelle structures were investigated toward 143B human osteosarcoma cells, showing an enhanced cytotoxicity and cellular uptake compared to the free drug PENAO (IC50 (PENAO) = 2.7 ± 0.3 µM; IC50 (micelle M4) = 0.8 ± 0.02 µM). Furthermore, PENAOs arsonous acid residue remains active when incorporated into a polymer matrix and conjugates to small mono and closely spaced dithiols and is able to actively target the mitochondria, which is PENAO's main target to introduce growth inhibition in cancer cells. As a result, no cleavable linker between drug and polymer was necessary for the delivery of PENAO to osteosarcoma cells. These findings provide a rationale for in vivo studies of micelle M4 versus PENAO in an osteosarcoma animal model.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Arsenicais/química , Arsenicais/farmacologia , Nanopartículas/química , Polímeros/química , Polímeros/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Polimerização , Compostos de Sulfidrila/química
2.
J Endovasc Ther ; 21(2): 230-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24754282

RESUMO

PURPOSE: To investigate the corrosion resistance properties of 5 commercially available nitinol stents used to treat peripheral artery disease and compare their surface quality, elemental composition, and geometrical design. METHODS: Samples of 5 different designs of nitinol peripheral stents [LifeStent (n=4), Philon (n=6), Epic (n=6), S.M.A.R.T. Control (n=7), and Complete SE (n=7)] were examined using stereomicroscopy, environmental scanning electron microscopy, and x-ray photoelectron spectroscopy. Corrosion resistance testing was performed in accordance with ASTM International Standard F2129-08. RESULTS: Thirteen (43%) of 30 stents corroded during this experiment. Stent fracture was observed in 12 (92%) of these corroded stents. Mean breakdown potentials ranged from 517 to 835 mV (vs. Ag/AgCl) for the Philon, Complete SE, S.M.A.R.T. Control, Epic, and LifeStent models from lowest to highest. A statistically significant difference in breakdown potential was observed between the LifeStent vs. Philon stents (835 vs. 517 mV, p=0.01) and Epic vs. Philon stents (833 vs. 517 mV, p=0.03). Stents with lower breakdown potential and relative breakdown potentials were associated with a higher fracture frequency (Spearman correlation coefficient -0.44, p=0.015 and -0.869, p<0.01, respectively). CONCLUSION: In this in vitro study, corrosion led independently to stent fracture. There is a significant association between lower mean breakdown/relative breakdown potentials and stent fracture.


Assuntos
Ligas , Procedimentos Endovasculares/instrumentação , Doença Arterial Periférica/terapia , Desenho de Prótese , Falha de Prótese , Stents , Corrosão , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Propriedades de Superfície
3.
ACS Appl Mater Interfaces ; 7(46): 25658-68, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26535913

RESUMO

Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 µM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon-coated nanostructures that are biocompatible and could potentially be employed in a wide range of biomedical applications.


Assuntos
Materiais Biocompatíveis/síntese química , Carbono/química , Ouro/química , Hipertermia Induzida , Nanotecnologia/métodos , Fototerapia , Teste de Materiais , Nanotubos/química , Nanotubos/ultraestrutura , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA