Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 201: 653-661, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038470

RESUMO

Polyhydroxyalkanoates (PHAs) and their derivatives are biopolymers that have the potential of replacing petroleum-based plastics and can be produced and degraded via bacterial metabolism. However, there are only a few studies on polyhydroxybutyrate (PHB) production using lactate, one of the major waste organic acids that could be implemented in the production of polylactic acid (PLA). Herein, we screened and characterized the PHA-producing microbial strains isolated from saltern soil from Docho Island (South Korea). Among the 24 identified microorganisms that can use lactate as a carbon source, Bacillus sp. YHY22, a newly reported strain, produced the highest amount of PHB: 4.05 g/L with 6.25 g/L dry cell weight, which is 64.7% PHB content under optimal production conditions. Bacillus sp. YHY22 could form the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer with propionate addition. Moreover, Bacillus sp. YHY22 produced PHB in non-sterilized 2% lactate and 8% NaCl marine broth culture medium, suggesting that its production can occur in high salinity media without additional sterilization steps, rendering fermentation cost- and time-efficient.


Assuntos
Bacillus , Poli-Hidroxialcanoatos , Bacillus/metabolismo , Biopolímeros/metabolismo , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Poliésteres/metabolismo
2.
Int J Biol Macromol ; 193(Pt A): 269-275, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695495

RESUMO

Bacterial nanocellulose (BNC) is characterized by high purity and excellent mechanical properties; however, its production is constrained by low yield. Therefore, efforts aimed at improving its yield and material properties are imperative. This study investigated the effect of adding different concentrations (0%, 0.5%, and 1.0%) of cellulose nanocrystal (CNC) in Hestrin-Schramm modified medium on the yield and properties of BNC produced by Komagataeibacter sp. SFCB22-18. The BNC yield increased as following an increase in added CNC concentration. Also, the morphology, structure, crystallinity, thermal stability, and mechanical properties of BNC improved after CNC incorporation. A low CNC concentration (0.1%) favored mechanical strength, whereas 0.5% gave the optimum morphology, structural, and thermal stability. These results showed that modifying BNC with CNC could help increase yield and improve its properties, and thus; the potentiality of BNC in various applications would be much enhanced.


Assuntos
Acetobacteraceae/metabolismo , Celulose/biossíntese , Nanopartículas/química , Nanoestruturas/química
3.
J Microbiol Biotechnol ; 31(10): 1366-1372, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319261

RESUMO

Bacterial nanocellulose (BNC) is a biocompatible material with a lot of potential. To make BNC commercially feasible, improvements in its production and surface qualities must be made. Here, we investigated the in situ fermentation and generation of BNC by addition of different cellulosic substrates such as Avicel and carboxymethylcellulose (CMC) and using Komagataeibacter sp. SFCB22-18. The addition of cellulosic substrates improved BNC production by a maximum of about 5 times and slightly modified its structural properties. The morphological and structural properties of BNC were investigated by using Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy and X-ray diffraction. Furthermore, a type-A cellulose-binding protein derived from Clostridium thermocellum, CtCBD3, was used in a novel biological analytic approach to measure the surface crystallinity of the BNC. Because Avicel and CMC may adhere to microfibrils during BNC synthesis or crystallization, cellulose-binding protein could be a useful tool for identifying the crystalline properties of BNC with high sensitivity.


Assuntos
Acetobacteraceae/química , Materiais Biocompatíveis/química , Celulose/química , Nanoestruturas/química , Carboximetilcelulose Sódica , Microscopia Eletrônica de Varredura , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Appl Biochem Biotechnol ; 182(3): 1108-1120, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28078651

RESUMO

To reduce the distillation costs of cellulosic ethanol, it is necessary to produce high sugar titers in the enzymatic saccharification step. To obtain high sugar titers, high biomass loadings of lignocellulose are necessary. In this study, to overcome the low saccharification yields and the low operability of high biomass loadings, a fed-batch saccharification process was developed using an enzyme reactor that was designed and built in-house. After optimizing the cellulase and biomass feeding profiles and the agitation speed, 132.6 g/L glucose and 76.0% theoretical maximum glucose were obtained from the 60 h saccharification of maleic acid-pretreated rice straw at a 30% (w/v) solids loading with 15 filter paper units (FPU) of Cellic CTec2/g glucan. This study demonstrated that through the proper optimization of fed-batch saccharification, both high sugar titers and high saccharification yields are possible, even with using the high solids loading (i.e., ≥30%) with the moderate enzyme loading (i.e., <15 FPU/g glucan). These results could be contributed to improving economic feasibility of the high solids saccharification process in cellulosic fuel and chemical production.


Assuntos
Biomassa , Celulase/química , Glucose/química , Lignina/química , Maleatos/química , Oryza/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA