Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Appl Environ Microbiol ; 88(9): e0239821, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35465724

RESUMO

Zymomonas mobilis metabolizes sugar anaerobically through the Entner-Doudoroff pathway with less ATP generated for lower biomass accumulation to direct more sugar for product formation with improved yield, making it a suitable host to be engineered as microbial cell factories for producing bulk commodities with major costs from feedstock consumption. Self-flocculation of the bacterial cells presents many advantages, such as enhanced tolerance to environmental stresses, a prerequisite for achieving high product titers by using concentrated substrates. ZM401, a self-flocculating mutant developed from ZM4, the unicellular model strain of Z. mobilis, was employed in this work to explore the molecular mechanism underlying this self-flocculating phenotype. Comparative studies between ZM401 and ZM4 indicate that a frameshift caused by a single nucleotide deletion in the poly-T tract of ZMO1082 fused the putative gene with the open reading frame of ZMO1083, encoding the catalytic subunit BcsA of the bacterial cellulose synthase to catalyze cellulose biosynthesis. Furthermore, the single nucleotide polymorphism mutation in the open reading frame of ZMO1055, encoding a bifunctional GGDEF-EAL protein with apparent diguanylate cyclase/phosphodiesterase activities, resulted in the Ala526Val substitution, which consequently compromised in vivo specific phosphodiesterase activity for the degradation of cyclic diguanylic acid, leading to intracellular accumulation of the signaling molecule to activate cellulose biosynthesis. These discoveries are significant for engineering other unicellular strains from Z. mobilis with the self-flocculating phenotype for robust production. IMPORTANCE Stress tolerance is a prerequisite for microbial cell factories to be robust in production, particularly for biorefinery of lignocellulosic biomass to produce biofuels, bioenergy, and bio-based chemicals for sustainable socioeconomic development, since various inhibitors are released during the pretreatment to destroy the recalcitrant lignin-carbohydrate complex for sugar production through enzymatic hydrolysis of the cellulose component, and their detoxification is too costly for producing bulk commodities. Although tolerance to individual stress has been intensively studied, the progress seems less significant since microbial cells are inevitably suffering from multiple stresses simultaneously under production conditions. When self-flocculating, microbial cells are more tolerant to multiple stresses through the general stress response due to enhanced quorum sensing associated with the morphological change for physiological and metabolic advantages. Therefore, elucidation of the molecular mechanism underlying such a self-flocculating phenotype is significant for engineering microbial cells with the unique multicellular morphology through rational design to boost their production performance.


Assuntos
Zymomonas , Celulose/metabolismo , Floculação , Diester Fosfórico Hidrolases/metabolismo , Açúcares/metabolismo , Zymomonas/genética , Zymomonas/metabolismo
2.
J Periodontal Res ; 56(5): 837-847, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34173676

RESUMO

Curcumin is the main active ingredient of turmeric, which has a wide range of pharmacological effects, including antitumor, antibacterial, anti-inflammatory, anti-oxidation, immune regulation, and so on. Periodontitis is a prevalent oral inflammatory disease caused by a variety of factors. In recent years, many studies have shown that curcumin has a potential role on the treatment of periodontitis. Curcumin has been used in research related to the treatment of periodontitis in the form of solution, chip, gel, and capsule. Combined with other periodontitis treatment methods, such as scaling and root planing (SRP) and photodynamic therapy (PDT), can enhance curcumin's efficacy in treating periodontitis. In addition to natural curcumin, chemically modified curcumin, such as 4-phenylaminocarbonyl bis-demethoxy curcumin (CMC 2.24) and 4-methoxycarbonyl curcumin (CMC 2.5), have also been used in animal models of periodontitis. Here, this paper reviews the research progress of curcumin on the treatment of periodontitis and its related mechanisms.


Assuntos
Curcumina , Periodontite , Animais , Anti-Inflamatórios/uso terapêutico , Curcumina/uso terapêutico , Raspagem Dentária , Periodontite/tratamento farmacológico , Aplainamento Radicular
3.
Metab Eng ; 50: 57-73, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29627506

RESUMO

Biorefinery of biomass-based biofuels and biochemicals by microorganisms is a competitive alternative of traditional petroleum refineries. Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for commercial production of desirable bioproducts through metabolic engineering. In this review, we summarize the metabolic engineering progress achieved in Z. mobilis to expand its substrate and product ranges as well as to enhance its robustness against stressful conditions such as inhibitory compounds within the lignocellulosic hydrolysates and slurries. We also discuss a few metabolic engineering strategies that can be applied in Z. mobilis to further develop it as a robust workhorse for economic lignocellulosic bioproducts. In addition, we briefly review the progress of metabolic engineering in Z. mobilis related to the classical synthetic biology cycle of "Design-Build-Test-Learn", as well as the progress and potential to develop Z. mobilis as a model chassis for biorefinery practices in the synthetic biology era.


Assuntos
Engenharia Metabólica/métodos , Biologia Sintética/métodos , Zymomonas/genética , Zymomonas/metabolismo , Lignina/genética , Lignina/metabolismo
4.
J Biomed Mater Res B Appl Biomater ; 111(3): 505-512, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36191250

RESUMO

Polyetheretherketone (PEEK) has become increasingly popular in dentistry and orthopedics due to its excellent chemical stability, reliable biosafety, and low elastic modulus. However, PEEK's biomechanical strength and bioactivity are limited and need to be increased as an implant material. The previous study in vitro has shown that the amino-functionalized carbon fiber reinforced PEEK (A-30%-CPEEK) possessed enhanced mechanical property and bioactivity. This study aims to evaluate the effect of amino groups modification on the osseointegration behavior of carbon fiber reinforced PEEK (30%-CPEEK) in rabbits. Herein, 30%-CPEEK and A-30%-CPEEK implant discs were implanted in rabbit skulls for 5 weeks, with pure titanium implants serving as a control. The bone-forming ability and osseointegration in vivo were systematically investigated by micro-computed tomography analysis, scanning electron microscope observation, and histological evaluation. Our results showed that all detection parameters were significantly different between the A-30%-CPEEK and 30%-CPEEK groups, favoring those in the A-30%-CPEEK, whose appraisal parameters were equal to or better than pure titanium. Therefore, this study supported the importance of amino groups in facilitating the new bone formation and bone-implant integration, suggesting that A-30%-CPEEK with enhanced osseointegration will be a promising material for dental or orthopedic implants.


Assuntos
Osseointegração , Titânio , Animais , Coelhos , Fibra de Carbono , Microtomografia por Raio-X , Titânio/farmacologia , Polietilenoglicóis/química , Cetonas/química
5.
Colloids Surf B Biointerfaces ; 215: 112492, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35430485

RESUMO

As orthopedic and dental implants, polyetheretherketone (PEEK) is expected to be a common substitute material of titanium (Ti) and its alloys due to its good biocompatibility, chemical stability, and elastic modulus close to that of bone tissue. It could avoid metal allergy and bone resorption caused by the stress shielding effect of Ti implants, widely studied in the medical field. However, the lack of biological activity is not conducive to the clinical application of PEEK implants. Therefore, the surface modification of PEEK has increasingly become one of the research hotspots. Researchers have explored various biomolecules modification methods to effectively enhance the osteogenic and antibacterial activities of PEEK and its composites. Therefore, this review mainly summarizes the recent research of PEEK modified by biomolecules and discusses the further research directions to promote the clinical transformation of PEEK implants.


Assuntos
Osseointegração , Osteogênese , Antibacterianos/farmacologia , Benzofenonas/farmacologia , Cetonas/química , Cetonas/farmacologia , Polietilenoglicóis/química , Polímeros , Propriedades de Superfície , Titânio/farmacologia
6.
Bioresour Technol ; 349: 126878, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35189331

RESUMO

Inhibitors in lignocellulosic hydrolysates are toxic to Zymomonas mobilis and reduce its bioethanol production. This study revealed cysteine supplementation enhanced furfural tolerance in Z. mobilis with a 2-fold biomass increase. Transcriptomic study illustrated that cysteine biosynthesis pathway was down-regulated while cysteine catabolism was up-regulated with cysteine supplementation. Mutants for genes involved in cysteine metabolism were constructed, and metabolites in cysteine metabolic pathway including methionine, glutathione, NaHS, glutamate, and pyruvate were supplemented into media. Cysteine supplementation boosted glutathione synthesis or H2S release effectively in Z. mobilis leading to the reduced accumulation of reactive oxygen species (ROS) induced by furfural, while pyruvate and glutamate produced in the H2S generation pathway promoted cell growth by serving as the carbon or nitrogen source. Finally, cysteine supplementation was confirmed to enhance Z. mobilis tolerance against ethanol, acetate, and corncob hydrolysate with an enhanced ethanol productivity from 0.38 to 0.55 g-1∙L-1∙h-1.


Assuntos
Zymomonas , Cisteína/metabolismo , Suplementos Nutricionais , Fermentação , Lignina/metabolismo , Zymomonas/genética , Zymomonas/metabolismo
7.
Biomed Mater ; 17(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114651

RESUMO

About 30% failures of implant are caused by peri-implantitis. Subgingival plaque, consisting of S. sanguinis, F. nucleatum,P. gingivalis et al, is the initiating factor of peri-implantitis. Polyetheretherketone (PEEK) is widely used for the fabrication of implant abutment, healing cap and temporary abutment in dental applications. As a biologically inert material, PEEK has shown poor antibacterial properties. To promote the antibacterial activity of PEEK, we loaded ZnO/GO on sulfonated PEEK. We screened out that when mass ratio of ZnO/GO was 4:1, dip-coating time was 25 min, ZnO/GO modified SPEEK shown the best physical and chemical properties. At the meantime, the ZnO/GO-SPEEK samples possess a good biocompatibility. The ZnO/GO-SPEEK inhibitsP. gingivalisobviously, and could exert an antibacterial activity toS. sanguinisin the early stage, prevents biofilm formation effectively. With the favorablein vitroperformances, the modification of PEEK with ZnO/GO is promising for preventing peri-implantitis.


Assuntos
Óxido de Zinco , Antibacterianos/química , Benzofenonas , Grafite , Cetonas/química , Polietilenoglicóis/química , Polímeros , Porosidade
8.
Colloids Surf B Biointerfaces ; 220: 112922, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274399

RESUMO

The corrosion resistance and osteogenic property of titanium-based implants are crucial for their clinical application. Although they have good stability in standard physiological solutions, limited corrosion resistance in the inflammatory environment is still an unavoidable problem. Herein, the calcined and uncalcined silicalite-1 coatings were synthesized on titanium alloy (Ti-6Al-4 V). The corrosion resistance was investigated by simulating an inflammatory environment in vitro, and osteogenic potential was also evaluated. Here, the uncalcined silicalite-1 coating had the highest corrosion protection efficiency (PE) for Ti-6Al-4 V, which inhibited the metal ion release, surface damage and mass loss in the short-term (7 days) and long-term (30 days). Moreover, positive cell responses, including adhesion, proliferation and osteogenic differentiation of MC3T3-E1 cells, were observed in the uncalcined silicalite-1 coating system, supporting its favorable biocompatibility and osteogenic property. Therefore, these findings indicate that the uncalcined silicalite-1 may be a promising coating strategy for the surface modification of Ti-6Al-4 V implants.


Assuntos
Ligas , Titânio , Ligas/farmacologia , Corrosão , Titânio/farmacologia , Osteogênese , Teste de Materiais , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia
9.
J Mech Behav Biomed Mater ; 135: 105472, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162163

RESUMO

OBJECTIVES: To find alternative non-metallic materials as dental implants for clinical application, different types of carbon fiber reinforced polyetheretherketone were fabricated and investigated. METHODS: Continuous carbon fiber reinforced polyetheretherketone fabrics were fabricated with polyetheretherketone fibers and carbon fibers. Different kinds of carbon fiber reinforced polyetheretherketone were synthesized by setting specific experiment parameters of injection or hot press molding. Various mechanical tests were performed to determine the mechanical properties of different carbon fiber reinforced polyetheretherketone, pure polyetheretherketone and pure titanium. RESULTS: Polyetheretherketone composites presented outstanding mechanical and thermal properties after incorporating carbon fiber. The bending and tensile strength of short carbon fiber reinforced polyetheretherketone were close to human bone, and the bending strength of continuous carbon fiber reinforced polyetheretherketone reached 644 MPa, even higher than that of pure titanium. CONCLUSIONS: The mechanical properties of polyetheretherketone composites are more similar to bone tissue than titanium, and the stress shielding phenomenon may be inhibited. They may become promising materials as substitutions for titanium and prospective materials in bone tissue engineering.


Assuntos
Implantes Dentários , Titânio , Benzofenonas , Carbono , Fibra de Carbono , Humanos , Cetonas , Teste de Materiais , Polietilenoglicóis/farmacologia , Polímeros
10.
BMC Microbiol ; 10: 135, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20459639

RESUMO

BACKGROUND: Zymomonas mobilis produces near theoretical yields of ethanol and recombinant strains are candidate industrial microorganisms. To date, few studies have examined its responses to various stresses at the gene level. Hfq is a conserved bacterial member of the Sm-like family of RNA-binding proteins, coordinating a broad array of responses including multiple stress responses. In a previous study, we observed Z. mobilis ZM4 gene ZMO0347 showed higher expression under anaerobic, stationary phase compared to that of aerobic, stationary conditions. RESULTS: We generated a Z. mobilis hfq insertion mutant AcRIM0347 in an acetate tolerant strain (AcR) background and investigated its role in model lignocellulosic pretreatment inhibitors including acetate, vanillin, furfural and hydroxymethylfurfural (HMF). Saccharomyces cerevisiae Lsm protein (Hfq homologue) mutants and Lsm protein overexpression strains were also assayed for their inhibitor phenotypes. Our results indicated that all the pretreatment inhibitors tested in this study had a detrimental effect on both Z. mobilis and S. cerevisiae, and vanillin had the most inhibitory effect followed by furfural and then HMF for both Z. mobilis and S. cerevisiae. AcRIM0347 was more sensitive than the parental strain to the inhibitors and had an increased lag phase duration and/or slower growth depending upon the conditions. The hfq mutation in AcRIM0347 was complemented partially by trans-acting hfq gene expression. We also assayed growth phenotypes for S. cerevisiae Lsm protein mutant and overexpression phenotypes. Lsm1, 6, and 7 mutants showed reduced tolerance to acetate and other pretreatment inhibitors. S. cerevisiae Lsm protein overexpression strains showed increased acetate and HMF resistance as compared to the wild-type, while the overexpression strains showed greater inhibition under vanillin stress conditions. CONCLUSIONS: We have shown the utility of the pKNOCK suicide plasmid for mutant construction in Z. mobilis, and constructed a Gateway compatible expression plasmid for use in Z. mobilis for the first time. We have also used genetics to show Z. mobilis Hfq and S. cerevisiae Lsm proteins play important roles in resisting multiple, important industrially relevant inhibitors. The conserved nature of this global regulator offers the potential to apply insights from these fundamental studies for further industrial strain development.


Assuntos
Antibacterianos/toxicidade , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Lignina/metabolismo , Proteínas de Ligação a RNA/fisiologia , Estresse Fisiológico , Zymomonas/fisiologia , Acetatos/toxicidade , Proteínas de Bactérias/genética , Benzaldeídos/toxicidade , Furaldeído/análogos & derivados , Furaldeído/toxicidade , Deleção de Genes , Teste de Complementação Genética , Mutagênese Insercional , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Zymomonas/efeitos dos fármacos , Zymomonas/metabolismo
11.
Biomed Mater ; 15(5): 055012, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32857733

RESUMO

Titanium (Ti) and its alloys are widely used in dental implants due to their favorable mechanical properties and biocompatibility. Surface characteristics, including physical and chemical properties, are crucial factors to enhance the osteogenesis performance of Ti. The aim of this study is to evaluate amino group surface modification to facilitate the osteogenic potential and bone repair of dental implants both in vitro and in vivo. Herein, amino group-modified Ti surfaces were constructed via the plasma-enhanced chemical vapor deposition (PECVD) technique with an allylamine monomer. The adhesion, proliferation, alkaline phosphate activity and osteogenesis-related genetic expression of MG-63 cells on the surfaces were performed in vitro and presented a significant increase in amino group-modified Ti compared with that in Ti. The in vivo study in miniature pigs was evaluated through micro-computed tomography analysis and histological evaluation, which exhibited enhanced new bone formation in amino group-modified Ti compared with that in Ti after implantation for 4, 8 and 12 weeks. Consequently, amino group surface modification with the PECVD technique may provide a promising modification method to enhance the osteogenesis performance of Ti implants.


Assuntos
Materiais Biocompatíveis/química , Osteogênese/efeitos dos fármacos , Titânio/química , Fosfatase Alcalina/metabolismo , Animais , Osso e Ossos/patologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/química , Implantes Dentários , Humanos , Técnicas In Vitro , Teste de Materiais , Microscopia Eletrônica de Varredura , Osseointegração , Osteoblastos/citologia , Próteses e Implantes , Propriedades de Superfície , Suínos , Porco Miniatura , Cicatrização , Microtomografia por Raio-X
12.
Colloids Surf B Biointerfaces ; 193: 111098, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32498001

RESUMO

Polyetheretherketone (PEEK) is considered as a potential dental and orthopedic implant material owing to its favorable thermal and chemical stability, biocompatibility and mechanical properties. However, the inherent bio-inert and inferior osseointegration of PEEK have hampered its clinical application. In addition, carbon fiber is widely used as a filler to reinforce polymers for sturdy composites owing to its high strength, modulus, etc. In the study, carbon fiber reinforced PEEK (CPEEK) composites were fabricated and modified with amino groups by plasma-enhanced chemical vapor deposition surface modification technique. The surface characterization of composites was evaluated by FE-SEM, EDS, AFM, Water contact angle, XPS and FTIR, which revealed that amino groups were successfully incorporated on the modified CPEEK surface and significantly increased the hydrophilicity. In vitro study, cell adhesion, proliferation, ALP activity, ECM mineralization, real-time PCR analysis, and ELISA analysis showed the adhesion, proliferation and osteogenic differentiation of MG-63 cells on the amino group-modified CPEEK surface were higher than the CPEEK, equal to or better than pure titanium. Hence, the results indicated that the amino group-modified CPEEK possessed enhanced bioactivity and osteogenic property, which may be a potential candidate material for dental implants.


Assuntos
Materiais Biocompatíveis/farmacologia , Fibra de Carbono/química , Cetonas/farmacologia , Polietilenoglicóis/farmacologia , Benzofenonas , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Cetonas/química , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Polietilenoglicóis/química , Polímeros , Propriedades de Superfície
13.
World J Clin Cases ; 8(24): 6408-6417, 2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33392324

RESUMO

BACKGROUND: In this case study, a minimally invasive transalveolar approach using platelet-rich fibrin and bone substitute with simultaneous implantation was carried out in an elderly patient. We analyzed the cone-beam computed tomography (CBCT) findings to evaluate bone regeneration. CASE SUMMARY: A 65-year-old female with no contraindications for dental implants and loss of maxillary bilateral molars is described. Examination by CBCT showed the available vertical bone height in the bilateral posterior maxilla was 0.5-6.8 mm in the left and 2.8-6.5 mm in the right. The patient underwent a transalveolar approach using platelet-rich fibrin and bone substitute with simulataneous placement of an implant 10 mm in length. Six months post-surgery, the implant showed excellent osseointegration with the bone graft. Thereafter, full-ceramic crowns were fitted. Follow-up at 2 years demonstrated satisfactory prognosis. CONCLUSION: Platelet-rich fibrin and bone substitute can be used to augment the maxillary sinus with a vertical bone height less than 4 mm.

14.
Chemosphere ; 237: 124485, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31394453

RESUMO

Forward osmosis (FO) has been used in the wastewater treatment due to its advantages including low energy consumption and low membrane fouling. In this study, real municipal wastewater was concentrated by FO process using seawater concentrate as draw solution (DS). The influences of operating conditions such as temperature, flow velocity and sewage pre-filtration on water flux were investigated. Chemical oxygen demand, total nitrogen, ammonia nitrogen and total phosphorus could not be enriched by 4 times while sewage was reduced to 1/4 volume. Excitation and emission matrix fluorescence spectrum showed that a fraction of dissolved organic compounds in sewage transported across membrane into DS. Membrane fouling was evaluated by scanning electronic microscope analysis that a dense cake layer was formed on the membrane surface after sewage filtration. However, water flux of the fouled membrane was highly recovered after 1 h of physical cleaning.


Assuntos
Água do Mar/química , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Filtração , Membranas Artificiais , Nitrogênio , Compostos Orgânicos , Osmose , Fósforo , Esgotos , Soluções , Águas Residuárias/química , Água , Purificação da Água
15.
Trends Biotechnol ; 37(9): 960-972, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30876702

RESUMO

Great effort has been devoted to engineering Saccharomyces cerevisiae with pentose metabolism through the oxido-reductase pathway for cellulosic ethanol production, but intrinsic cofactor imbalance is observed, which substantially compromises ethanol yield. Zymomonas mobilis not only can be engineered for pentose metabolism through the isomerase pathway without cofactor imbalance but also metabolizes sugar through the Entner-Doudoroff pathway with less ATP and biomass produced for more sugar to be used for ethanol production. Moreover, the availabilities of genome sequence information for multiple Z. mobilis strains and advanced genetics tools have laid a solid foundation for engineering this species, and the self-flocculation of the bacterial cells also presents significant advantages for bioprocess engineering. Here, we highlight some of recent advances in these aspects.


Assuntos
Celulose/metabolismo , Etanol/metabolismo , Zymomonas/genética , Zymomonas/metabolismo , Fermentação , Engenharia Genética
16.
Environ Sci Pollut Res Int ; 26(9): 8585-8593, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30710329

RESUMO

In this study, trisodium citrate was used as draw solute in forward osmosis (FO) due to its biodegradability and easy reuse after FO dilution. The effect of operating conditions on FO performance was investigated. The study focused on the long-term flux performance and membrane fouling when surface water was used as feed solution. A water flux of 9.8 LMH was observed using 0.5 M trisodium citrate as draw solution in PRO mode. In the long-term FO process, trisodium citrate showed a slight decrease in total flux loss (13.06%) after 20 h of operation. The membrane fouling was significantly reduced after a two-step physical cleaning. A considerable flux recovery (> 95%) of the fouled membrane was finally obtained. Therefore, this study proves the superiority of trisodium citrate as draw solution and paves a new way in applying FO directly for surface water reclamation.


Assuntos
Citratos/química , Ácido Cítrico/química , Purificação da Água/métodos , Membranas Artificiais , Osmose , Soluções
17.
Curr Opin Biotechnol ; 27: 38-45, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24863895

RESUMO

A biochemical platform holds the most promising route toward lignocellulosic biofuels, in which polysaccharides are hydrolyzed by cellulase enzymes into simple sugars and fermented to ethanol by microbes. However, these polysaccharides are cross-linked in the plant cell walls with the hydrophobic network of lignin that physically impedes enzymatic deconstruction. A thermochemical pretreatment process is often required to remove or delocalize lignin, which may also generate inhibitors that hamper enzymatic hydrolysis and fermentation. Here we review recent advances in understanding lignin structure in the plant cell walls and the negative roles of lignin in the processes of converting biomass to biofuels. Perspectives and future directions to improve the biomass conversion process are also discussed.


Assuntos
Biocombustíveis/provisão & distribuição , Lignina/metabolismo , Biomassa , Parede Celular/química , Parede Celular/metabolismo , Celulase/metabolismo , Etanol/metabolismo , Fermentação , Hidrólise , Lignina/química , Plantas/química , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA