Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biomacromolecules ; 23(6): 2614-2623, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35603741

RESUMO

Compared to traditional two-dimensional (2D) biochips, three-dimensional (3D) biochips exhibit the advantages of higher probe density and detection sensitivity due to their designable surface microstructure as well as enlarged surface area. In the study, we proposed an approach to prepare a 3D protein chip by deposition of a monolayer of functionalized hollow silica nanoparticles (HSNs) on an activated cyclic olefin copolymer (COC) substrate. First, the COC substrate was chemically modified through the photografting technique to tether poly[3-(trimethoxysilyl) propyl methacrylate] (PTMSPMA) brushes on it. Then, a monolayer of HSNs was deposited on the modified COC and covalently attached via a condensation reaction between the hydrolyzed pendant siloxane groups of PTMSPMA and the Si-OH groups of HSNs. The roughness of the COC substrate significantly increased to 50.3 nm after depositing a monolayer of HSNs (ranging from 100 to 700 nm), while it only caused a negligible reduction in the light transmittance of COC. The HSN-modified COC was further functionalized with epoxide groups by a silane coupling agent for binding proteins. Immunoglobulin G could be effectively immobilized on this substrate with the highest immobilization efficiency of 75.2% and a maximum immobilization density of 1.236 µg/cm2, while the highest immobilization efficiency on a 2D epoxide group-modified glass slide was only 57.4%. Moreover, immunoassay results confirmed a competitive limit of detection (LOD) (1.06 ng/mL) and a linear detection range (1-100 ng/mL) of the 3D protein chip. This facile and effective approach for fabricating nanoparticle-based 3D protein microarrays has great potential in the field of biorelated detection.


Assuntos
Nanopartículas , Análise Serial de Proteínas , Compostos de Epóxi , Polímeros/química , Dióxido de Silício
2.
Macromol Rapid Commun ; 39(20): e1800212, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29947153

RESUMO

Entrapment of living cells into a polymer network has significant potential in various fields such as biomass conversion and tissue engineering. A crucial challenge for this strategy is to provide a mild enough condition to preserve cell viability. Here, a facile and cytocompatible method to entrap living yeast cells into a poly(ethylene glycol) (PEG) network grafting from polypropylene nonwoven fabrics via visible-light-induced surface living graft crosslinking polymerization is reported. Due to the mild reaction conditions and excellent biocompatibility of PEG, the immobilized yeast cells could maintain their viability and proliferate well. The obtained composite sheet has excellent long-term stability and shows no significant efficiency loss after 25 cycles of repeated batch bioethanol fermentation. The immobilized yeast cells exhibit 18.0% higher bioethanol fermentation efficiency than free cells. This strategy for immobilization of living cells with high viability has significant potential application.


Assuntos
Células Imobilizadas/química , Etanol/síntese química , Polimerização , Saccharomyces cerevisiae/química , Células Imobilizadas/metabolismo , Etanol/química , Etanol/metabolismo , Fermentação , Polietilenoglicóis/química , Polipropilenos/química , Propriedades de Superfície
3.
Macromol Rapid Commun ; 39(20): e1800298, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30085365

RESUMO

A simple approach to synthesize extremely high glass transition temperature (Tg > 300 °C) hydrocarbon polymers that introduces bridged cyclic backbone and bulky pendant group simultaneously is reported. This method uses highly 3,4-regulated poly(phenyl-1,3-butadiene) as a prepolymer for cationic cyclization postmodification. The Tg of cyclized highly 3,4-regulated (94.0%) poly(1-phenyl-1,3-butadiene) (P(1-PB)) can reach 304 °C. To further restrict the movement of bridged cyclic backbone by changing the position of the pendant substituent group, highly 3,4-regulated (96.2%) poly(2-phenyl-1,3-butadiene) (P(2-PB)) is used as the prepolymer. The Tg of its cyclized product reaches 325 °C, and this value is the highest ever reported among all hydrocarbon polymers. The results indicate that the regularity of poly(phenyl-1,3-butadiene) and the pendant substituent group are crucial factors when synthesizing high-temperature hydrocarbon polymers through this approach.


Assuntos
Butadienos/síntese química , Hidrocarbonetos/síntese química , Polímeros/síntese química , Butadienos/química , Cátions , Ciclização , Hidrocarbonetos/química , Polímeros/química , Temperatura de Transição
4.
Langmuir ; 33(22): 5577-5584, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28514852

RESUMO

The use of the mixed catalytic system with several enzymes can provide multiple benefits in terms of the cost, simplification of a multistep reaction, and effectiveness of complex chemical reactions. Although study of different enzyme coimmobilization systems has attracted increasing attention in recent years, separately immobilizing enzymes which can not coexist on one support is still one of the great challenges. In this paper, a simple and effective strategy was introduced to separately encapsulate incompatible trypsin and transglutaminase (TGase) into different poly(ethylene glycol) (PEG) network layer grafted on low-density polyethylene (LDPE) film via visible light induced living photografting polymerization. As a proof of concept, this dual-enzyme separately loaded film was used to catalyze the synthesis of a new target antitumor drug LTV-azacytidine. The final results demonstrated that this strategy could maintain higher activities of both enzymes than the mixed coimmobilization method. And the mass spectra analysis results demonstrated that LTV-azacytidine was successfully synthesized. We believe that this facile and mild separately immobilizing incompatible enzyme strategy has great application potential in the field of biocatalysis.


Assuntos
Polietilenoglicóis/química , Enzimas Imobilizadas , Luz , Polimerização
5.
Macromol Rapid Commun ; 37(19): 1611-1617, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27501990

RESUMO

The precise construction of a hierarchical complex pattern on substrates is required for numerous applications. Here, a strategy to fabricate well-defined hierarchical three dimensional (3D) patterns on polymer substrate is developed. This technique, which combines photolithography and visible light-induced surface initiated living graft crosslinking polymerization (VSLGCP), can effectively graft 3D patterns onto polymer substrate with high fidelity and controllable height. Owing to the living nature of VSLGCP, hierarchical 3D patterns can be prepared when a sequential living graft crosslinking process is performed on the first formed patterns. As a proof-of-concept, a reactive two layer 3D pattern with a morphology of lateral stripe on vertical stripe is prepared and employed to separately immobilize model biomolecules, e.g., biotin and IgG. This two component pattern can specifically interact with corresponding target proteins successfully, indicating that this strategy has potential applications in the fabrication of polymer-based multicomponent biomolecule microarrays.


Assuntos
Luz , Polímeros/química , Tamanho da Partícula , Processos Fotoquímicos , Polímeros/síntese química , Propriedades de Superfície
6.
Langmuir ; 30(50): 15229-37, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489918

RESUMO

Although the hydrogel network has been widely investigated as a carrier for enzyme immobilization, to in situ encapsulate enzymes into a hydrogel network in an efficient, practical, and active way is still one of the great challenges in the field of biochemical engineering. Here, we report a new protocol to address this issue by encapsulating enzyme into poly(ethylene glycol) (PEG) hydrogel network grafted on polymeric substrates. In our strategy, isopropyl thioxanthone semipinacol (ITXSP) dormant groups were first planted onto the surface of a plastic matrix with low density polyethylene (LDPE) film as a model by a UV-induced abstracting hydrogen-coupling reaction. As a proof of concept, lipase, which could catalyze esterification of glucose with palmitic acid, then was in situ net-immobilized into a PEG-based hydrogel network layer through a visible light-induced surface controlled/living graft cross-linking polymerization. This strategy demonstrates the following novel significant merits: (1) in comparison with the UV irradiation or high temperature, the visible light and room temperature used provide a friendly condition to maintain activity of enzyme during immobilization; (2) the uniqueness of controlled/living cross-linking polymerization not only makes it easy to form a uniform PEG hydrogel network, which is a benefit to avoid the leakage of net-immobilizing enzyme, but also to tune the net-thickness or capacity to accommodate enzyme; and (3) as compared to systems of nanoparticles and porous matrixes, the flexible/robust end-products of the surface net-immobilizing enzyme with polymer film are more suitable to be applied in a bioreactor due to their features of easier separation and reuse. We confirmed that this catalytic film could retain almost all of its initial activity after seven batches of 24 h esterifications. The proposed strategy provides an extremely simple, effective, and flexible method for enzyme immobilization.


Assuntos
Enzimas Imobilizadas/química , Hidrogéis/química , Polietilenoglicóis/química , Animais , Biocatálise , Cápsulas , Enzimas Imobilizadas/metabolismo , Luz , Lipase/química , Processos Fotoquímicos , Polietileno/química , Polimerização , Solventes/química , Propriedades de Superfície , Suínos , Xantonas/química
7.
Macromol Rapid Commun ; 35(1): 91-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24285562

RESUMO

The first synthesis of porous, optically active, magnetic Fe3 O4 @poly(N-acryloyl-leucine) inverse core/shell composite microspheres is reported, in which the core is constructed of chiral polymer and the shell is constructed of Fe3 O4 NPs. The microspheres integrate three significant concepts, "porosity", "chirality", and "magneticity", in one single microspheric entity. The microspheres consist of Fe3 O4 nanoparticles and porous optically active microspheres, and thus combine the advantages of both magnetic nanoparticles and porous optically active microspheres. The pore size and specific surface area of the microspheres are characterized by N2 adsorption, from which it is found that the composite microspheres possess a desirable porous structure. Circular dichroism and UV-vis absorption spectroscopy measurements demonstrate that the microspheres exhibit the expected optical activity. The microspheres also have high saturation magnetization of 14.7 emu g(-1) and rapid magnetic responsivity. After further optimization, these novel microspheres may potentially find applications in areas such as asymmetric catalysis, chiral adsorption, etc.


Assuntos
Acrilatos/química , Compostos Férricos/química , Leucina/química , Magnetismo , Microesferas , Polímeros/química , Dicroísmo Circular , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta
8.
Macromol Rapid Commun ; 35(8): 840-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24504709

RESUMO

Redox-cleavable mikto-arm star polymers are prepared by an "arm-first" approach involving copolymerization of a dimethacrylate mediated by a mixture of macroRAFT agents. Thus, RAFT copolymerization of the monomers BMA, DMAEMA, and OEGMA, with the disulfide dimethacrylate cross-linker (DSDMA), bis(2-methacryloyl)oxyethyl disulfide, mediated by a 1:1:1 mixture of three macroRAFT agents with markedly different properties [hydrophilic, poly[oligo(ethylene glycol) methacrylate]-P(OEGMA)8-9 ; cationizable, poly[2-(dimethylamino)ethyl methacrylate]-P(DMAEMA); hydrophobic, poly(n-butyl methacrylate)-P(BMA)] provides low dispersity mikto-arm star polymers. Good control (D < 1.3) is observed for the target P(DMAEMA)/P(OEGMA)/P(BMA) (3:3:1) mikto-arm star, a double hydrophilic P(DMAEMA)/P(OEGMA) (3:3) mikto-arm star and a hydrophobic P(BMA) homo-arm star. However, D for the target mikto-arm stars increases with an increase in either the ratio [DSDMA]:[total macroRAFT] or the fraction of hydrophobic P(BMA) macroRAFT agent. The quaternized mikto-arm star in dilute aqueous solution shows a monomodal particle size distribution and an average size of ≈145 nm.


Assuntos
Modelos Químicos , Polimerização , Polímeros/química , Polímeros/síntese química , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Microscopia de Força Atômica , Estrutura Molecular , Ácidos Pentanoicos/química , Fosfinas/química , Polietilenoglicóis/química , Espectroscopia de Prótons por Ressonância Magnética
9.
Langmuir ; 29(51): 16018-24, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24308387

RESUMO

Two types of facile approaches toward ultrafine Ag/polymer hybrid nanoparticles (NPs) within 10 nm are introduced. Template and in-situ formation method are developed by photoreduction based on inverse microemulsion (IME) polymerization of N,N-dimethylacrylamide (DMAA). The template method refers to the usage of size-varied polymeric PDMAA NPs as templates for the preparation of Ag/PDMAA hybrids with desired morphology and optical property. To avoid the self-seeding nucleation of free Ag(+) in the solution, in-situ formation method is developed by introducing AgNO3 during IME polymerization, in which product hybrids could be obtained via autoprecipitation in large scale. Additionally, the produced Ag/PDMAA hybrids show high antibacterial performance.


Assuntos
Acrilamidas/química , Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Prata/farmacologia , Escherichia coli/efeitos dos fármacos
10.
Biomacromolecules ; 14(5): 1278-86, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23495918

RESUMO

Creating patterns of biomolecules and cells has been applied widely in many fields associated with the life sciences, including diagnostics. In these applications it has become increasingly apparent that the spatiotemporal arrangement of biological molecules in vitro is important for the investigation of the cellular functions found in vivo. However, the cell patterning techniques often used are limited to creating 2D functional surfaces on glass and silicon. In addition, in general, these procedures are not easy to implement in conventional biological laboratories. Here, we show the formation of a living poly(ethylene glycol) (PEG) layer that can be patterned with visible light on plastic surfaces. This new and simple method can be expanded to pattern multiple types of biomolecule on either a previously formed PEG layer or a plastic substrate. Using common plastic wares (i.e., polyethylene films and polystyrene cell culture Petri-dishes), we demonstrate that these PEG-modified surfaces have a high resistance to protein adsorption and cell adhesion, while at the same time, being capable of undergoing further molecular grafting with bioactive motifs. With a photomask and a fluid delivery system, we illustrate a flexible way to immobilize biological functions with a high degree of 2D and 3D spatial control. We anticipate that our method can be easily implemented in a typical life science laboratory (without the need for specialized lithography equipment) offering the prospect of imparting desirable properties to plastic products, for example, the creation of functional microenvironments in biological studies or reducing biological adhesion to surfaces.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Polietilenoglicóis/química , Polietileno/química , Poliestirenos/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Luz , Plásticos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
12.
Macromol Rapid Commun ; 34(16): 1319-24, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23852634

RESUMO

This communication reports the first gold nanoparticles (NPs) chirally functionalized with optically active helical substituted polyacetylene (the resulting hybrid particles are defined as Au@PPA NPs). The novel nanoparticles consist of gold as core and optically active helical poly(N-propargylamide) as shell and show considerable optical activity derived from helical poly(N-propargylamide) chains with predominantly one-handed screw sense. The Au@PPA NPs are prepared by a three-step approach: i) a thiol-containing N-propargylamide monomer [Mth , HC≡CCH2 NHCO(CH2 )10 SH] is synthesized and characterized with FTIR and(1) HNMR spectroscopy and elemental analysis; ii) a copolymer (poly(Mth -co-Mch )) was prepared by starting from monomer Mth and another chiral N-propargylamide monomer (Mch ); poly(Mth -co-Mch ) formed helical conformations and showed optical activities; and, iii) Au@PPA NPs are prepared from hydrogen tetrachloroaurate (III) and poly(Mth -co-Mch ) through a one-spot procedure by using LiBH4 as reducing agent. The as-obtained hybrid nanoparticles are characterized by FTIR spectroscopy, TEM, UV-vis absorption and circular dichroism (CD) techniques. UV-vis and CD measurements demonstrated the remarkable optical activity of the Au@PPA NPs. More interestingly, the Au@PPA NPs show much stronger UV-vis and CD sigals when compared to the corresponding orginal helical copolymer, poly(Mth -co-Mch ). The chiral hybrid nanoparticles demonstrate different absorption toward (R)-(+)- and (S)-(-)-1-phenylethylamines, preferentially adsorbing the (S)-isomer.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanopartículas/química , Nylons/química , Adsorção , Dicroísmo Circular , Nanopartículas Metálicas/ultraestrutura , Fenetilaminas/química , Espectrofotometria Ultravioleta , Estereoisomerismo
13.
Macromol Rapid Commun ; 34(7): 616-20, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23401022

RESUMO

A polyvinylpyrrolidone (PVP)-based fluorescent film with stable optical properties is successfully prepared in one pot without any additive. The reaction mechanism of ring-opening and self-crosslinking of linear PVP is proposed and demonstrated. The morphologies and the nanostructures of the fluorescent film as well as the unmodified film are investigated. The dye is incorporated into the film networks via covalent linkages, thus leading to the highly stable optical properties. The facile and effective synthesis approach opens a new way for the design of other multi-functional composite materials based on linear PVP.


Assuntos
Corantes Fluorescentes/química , Nanoestruturas/química , Povidona/química , Estrutura Molecular , Povidona/síntese química , Propriedades de Superfície
14.
Macromol Rapid Commun ; 34(18): 1426-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24030962

RESUMO

Particles constructed by chiral polymers (defined as PCPs) have emerged as a rapidly expanding research field in recent years because of their potentially wide-ranging applications in asymmetric catalysis, enantioselective crystallization, enantioselective release, amongst many others. The particles show considerable optical activity, due to the chirality of the corresponding polymers from which the particles are derived. This review article presents an overview on PCPs with emphasis on our group's recent achievements in the preparation of PCPs derived from optically active helical polymers and their applications. PCPs can be prepared via emulsion polymerization, precipitation polymerization, and suspension polymerization by starting from monomers. Emulsification of preformed chiral polymers and self-assembly approaches also can lead to PCPs. Chiral polymer-based core/shell particles, hollow particles, and magnetic particles are also covered because of their remarkable properties and significant potential applications.


Assuntos
Óptica e Fotônica , Polimerização , Polímeros/química , Catálise , Cristalização , Emulsões/química , Tamanho da Partícula
15.
ACS Appl Mater Interfaces ; 15(40): 47810-47821, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782773

RESUMO

Developing coating materials with low cytotoxicity and high antimicrobial activity has been recognized as an effective way to prevent medical device-associated infections. In this study, a maleic anhydride terpolymer (PPTM) is synthesized and covalently attached to silicone rubber (SR) surface. The formed coating can be further cross-linked (SPM) through the self-condensation of pendent siloxane groups of terpolymer. No crack or delamination of SPM was observed after 500 cycles of bending and 7 day immersion in deionized water. The sliding friction force of a catheter was reduced by 50% after coating with SPM. The SPM coating without adding any extra antibacterial reagents can kill 99.99% of Staphylococcus aureus and Escherichia coli and also significantly reduce bacterial coverage, while the coating displayed no antimicrobial activity when maleic anhydride groups of SPM were aminated or hydrolyzed. The results of the repeated disinfection tests showed that the SR coated with SPM could maintain 87.3% bactericidal activity within 5 cycles. Furthermore, the SPM coating only imparted slight toxic effect (>85% viability) on L929 cells after 36 h of coculture, which is superior to the coating of aminated SPM conjugated with the antimicrobial peptide E6. The terpolymer containing maleic anhydride units have great potential as a flexible and durable coating against implant infections.


Assuntos
Anti-Infecciosos , Anidridos Maleicos , Biofilmes , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Catéteres/microbiologia , Elastômeros de Silicone/química , Escherichia coli , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
16.
ACS Appl Mater Interfaces ; 15(2): 3543-3557, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36622779

RESUMO

Multi stimuli-responsive aggregation-induced emission (AIE) active polymers have great application prospects in high-tech innovations. Herein, three types of tetraphenylethylene (TPE)-containing monomers were synthesized and utilized in preparing TPE-appended maleic anhydride terpolymers. After hydrolysis, the produced TPE-appended maleic acid terpolymers have identical linear charge densities but different "primary" structures, which created widely varied microenvironments around the carboxylate and TPE groups. Benefiting from the synergistic interaction of the TPE moiety and the terpolymer conformation change, the TPE-appended maleic acid terpolymers exhibited fluorescence changes in response to multi stimuli, including pH, ionic strength, Ca2+, and bovine serum albumin. On both the "signaling" and the "stimuli acceptor" sides, the multi stimuli-responsive fluorescence behavior was influenced markedly by the terpolymer primary structure. The fundamental insights gained in the present work are important for developing an efficient and versatile stimuli-responsive AIE-active polymer platform for chemo-sensing, bioimaging, and so on.


Assuntos
Polímeros Responsivos a Estímulos , Polímeros/química , Anidridos Maleicos
17.
ACS Appl Mater Interfaces ; 15(30): 36759-36770, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477654

RESUMO

The development of degradable, cost-effective, and eco-friendly ionic conductive gels is highly required to reduce electronic waste originating from flexible electronic devices. However, biocompatible, degradable, tough, and durable conductive gels are challenging to achieve. Herein, we develop a facile strategy for the design and synthesis of degradable tough eutectogels by integrating an electrostatically driven supramolecular network composed of branched polyacrylic acid (PAA) and monoethanolamine (MEA) into a green deep eutectic solvent with chitosan quaternary ammonium salt (CQS). The specially designed PAA/MEA/CQS eutectogels present multiple desired properties, including high transparency, widely adjustable mechanical properties, high resilience, reliable adhesiveness, excellent self-healing ability, good conductivity, remarkable anti-freezing performance, and antibacterial properties. The dynamic and reversible supramolecular interactions not only significantly enhance the mechanical properties of the PAA/MEA/CQS eutectogels but also enable fast degradation, addressing the dilemma between mechanical strength and degradability. More importantly, a biocompatible and degradable multifunctional ionic skin is successfully fabricated based on the PAA/MEA/CQS eutectogel, exhibiting high sensitivity, a wide sensing range, and a rapid response speed toward strain, pressure, and temperature. Thus, this study offers a promising strategy for fabricating degradable tough eutectogels, which show great potential as high-performance ionic skins for next-generation flexible wearable electronic devices.


Assuntos
Pele , Íons/química , Pele/química , Antibacterianos/química , Cicatrização , Adesividade , Géis/química , Materiais Biocompatíveis/química , Humanos
18.
Macromol Rapid Commun ; 33(8): 652-7, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22318956

RESUMO

This Communication reports optically active helical substituted polyacetylenes which solely catalyzed asymmetric Aldol reaction between cyclohexanone and p-nitrobenzaldehyde; more importantly the helical structures are found to play crucial roles in the asymmetric catalysis, with a remarkable yield and ee (both up to 80%). A synergic effect is observed between the helical structures in the polymer main chains and the pendent prolinamide moieties for successfully catalyzing the asymmetric reaction. The role of the helical polymer backbones is further verified by tuning the relative helical structure content.


Assuntos
Aldeídos/química , Materiais Biomiméticos/química , Polímeros/química , Benzaldeídos/química , Materiais Biomiméticos/metabolismo , Catálise , Dicroísmo Circular , Cicloexanonas/química , Enzimas/metabolismo
19.
J Mater Chem B ; 10(2): 293-301, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34913463

RESUMO

Fabrication of three-dimensional (3D) surface structures for the high density immobilization of biomolecules is an effective way to prepare highly sensitive biochips. In this work, a strategy to attach polymeric microspheres on a cyclic olefin copolymer (COC) substrate for the preparation of a 3D protein chip was developed. The COC surface was firstly functionalized by the photograft technique with epoxy groups, which were subsequently converted to amine groups. Then monodisperse poly(styrene-alt-maleic anhydride) (PSM) copolymer microspheres were prepared by self-stabilized precipitation polymerization and deposited as a single layer on a modified COC surface to form a 3D surface texture. The surface roughness of the COC support undergoes a significant increase from 1.4 nm to 37.1 nm after deposition of PSM microspheres with a size of 460 nm, and the modified COC still maintains a transmittance of more than 63% at the fluorescence excitation wavelengths (555 nm and 647 nm). The immobilization efficiency of immunoglobulin G (IgG) on the 3D surface reached 75.6% and the immobilization density was calculated to be 0.255 µg cm-2, at a probe protein concentration of 200 µg mL-1. The 3D protein microarray can be rapidly blocked by gaseous ethylenediamine within 10 minutes due to the high reactivity of anhydride groups in PSM microspheres. Immunoassay results show that the 3D protein microarray achieved specific identification of the target protein with a linear detection range from 6.25 ng mL-1 to 250 ng mL-1 (R2 > 0.99) and a limit of detection of 8.87 ng mL-1. This strategy offers a novel way to develop high performance polymer-based 3D protein chips.


Assuntos
Anticorpos Imobilizados/química , Imunoglobulina G/análise , Imunoglobulina G/química , Microesferas , Imunoensaio/instrumentação , Imunoensaio/métodos , Limite de Detecção , Maleatos/química , Poliestirenos/química , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos
20.
ACS Nano ; 15(10): 15920-15929, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34591443

RESUMO

Coating living cells with a functional shell has been regarded as an effective way to protect them against environmental stress, regulate their biological behaviors, or extend their functionalities. Here, we reported a facile method to prepare fully or partially coated shells on an individual yeast cell surface by visible light-induced graft polymerization. In this strategy, yeast cells that were surface-absorbed with polyethylenimine (PEI) were deposited on the negatively charged glass slide to form a single layer by electrostatic interaction. Then, surface-initiated graft polymerization of poly(ethylene glycol) diacrylate (PEGDA) on yeast cells under visible light irradiation was carried out to generate cross-linked shells on the cells. The process of surface modification had negligible influence on the viability of yeast cells due to the mild reaction condition. Additionally, compared to the native yeast cells, a 17.5 h of delay in division was observed when the graft polymerization was performed under 15 mW/cm2 irradiation for 30 min. Introducing artificial shell endowed yeast cells with significant resistance against lyticase, and the protection can be enhanced by increasing the thickness of shell. Moreover, the partially coated yeast cells would be prepared by simply adjusting the reaction condition such as irradiation density and time. By immobilizing urease on the functional patch, the asymmetrically modified yeast cells exhibited self-propelling capability, and the speed of directional movement reached 4 µm/s in the presence of 200 mM urea. This tunable coating individual cell strategy with varying functionality has great potential applications in fields of cell-based drug delivery, cell therapy, biocatalysis, and tissue engineering.


Assuntos
Luz , Polietilenoimina , Sistemas de Liberação de Medicamentos , Polimerização , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA