Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 194(1): 243-257, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399189

RESUMO

Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.


Assuntos
Populus , Populus/genética , Populus/metabolismo , Xilanos/metabolismo , Acetilação , Biomassa , Biocombustíveis/análise , Plantas/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo
2.
Environ Sci Technol ; 58(6): 2944-2955, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306690

RESUMO

The estuary is an energetic area connecting the inland, river, and ocean. The migration of microplastics (MPs) in this highly complex area is tied to the entire ecosystem. In this study, the effects of cohesive SPM (clay) and noncohesive SPM (sand) on the vertical migration of positively buoyant MPs, polyethylene (PE), and negatively buoyant MPs, polytetrafluoroethylene (PTFE), in the estuarine environment under hydrodynamic disturbances were investigated. The settling of positively buoyant MPs was more reliant on the cohesive SPM compared to the settling of negatively buoyant MPs. Moreover, MPs interacting with the SPM mixture at a clay-to-sand ratio of 1:9 settled more efficiently than those interacting with clay alone. A significant positive correlation was observed between MP settling percentage and the salinity level. MP settling percentage was significantly negatively correlated with fluid shear stress for both types of MPs, meanwhile, negatively buoyant MPs were able to resist greater hydraulic disturbances. In the low-energy mixing state, for both types of MPs, the settling percentage reached about 50% in only 10 min. The resuspension process of MPs under hydrodynamic disturbances was also uncovered. Additionally, the migration and potential sites of MPs were described in the context of prevalent environmental phenomena in estuaries.


Assuntos
Material Particulado , Poluentes Químicos da Água , Material Particulado/análise , Microplásticos , Plásticos , Salinidade , Areia , Hidrodinâmica , Argila , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Estuários
3.
Macromol Rapid Commun ; 45(14): e2400105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623606

RESUMO

Intelligent materials derived from green and renewable bio-based materials garner widespread attention recently. Herein, shape memory polyurethane composite (PUTA/Fe) with fast response to near-infrared (NIR) light is successfully prepared by introducing Fe3+ into the tannic acid-based polyurethane (PUTA) matrix through coordination between Fe3+ and tannic acid. The results show that the excellent NIR light response ability is due to the even distribution of Fe3+ filler with good photo-thermal conversion ability. With the increase of Fe3+ content, the NIR light response shape recovery rate of PUTA/Fe composite films is significantly improved, and the shape recovery time is reduced from over 60 s to 40 s. In addition, the mechanical properties of PUTA/Fe composite film are also improved. Importantly, owing to the dynamic phenol-carbamate network within the polymer matrix, the PUTA/Fe composite film can reshape its permanent shape through topological rearrangement and show its good NIR light response shape memory performance. Therefore, PUTA/Fe composites with high content of bio-based material (TA content of 15.1-19.4%) demonstrate the shape memory characteristics of fast response to NIR light; so, it will have great potential in the application of new intelligent materials including efficient and environmentally friendly smart photothermal responder.


Assuntos
Carbamatos , Raios Infravermelhos , Ferro , Poliuretanos , Taninos , Taninos/química , Poliuretanos/química , Ferro/química , Carbamatos/química , Fenóis/química , Fenol/química , Materiais Inteligentes/química , Polifenóis
4.
Environ Res ; 250: 118506, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387496

RESUMO

Polystyrene nanoplastics (PS-NPs), a group of ubiquitous pollutants, may injure the central nervous system through the blood‒brain barrier (BBB). However, whether exposure to PS-NPs contributes to BBB disruption and the underlying mechanisms are still unclear. In vivo, we found that PS-NPs (25 mg/kg BW) could significantly increase BBB permeability in mice and downregulate the distribution of the tight junction-associated protein zona occludens 1 (ZO-1) in brain microvascular endothelial cells (BMECs). Using an in vitro BBB model, exposure to PS-NPs significantly reduced the transendothelial electrical resistance and altered ZO-1 expression and distribution in a dose-dependent manner. RNA-seq analysis and functional investigations were used to investigate the molecular pathways involved in the response to PS-NPs. The results revealed that the ferroptosis and glutathione metabolism signaling pathways were related to the disruption of the BBB model caused by the PS-NPs. PS-NPs treatment promoted ferroptosis in bEnd.3 cells by inducing disordered glutathione metabolism in addition to Fe2+ and lipid peroxide accumulation, while suppressing ferroptosis with ferrostatin-1 (Fer-1) suppressed ferroptosis-related changes in bEnd.3 cells subjected to PS-NPs. Importantly, Fer-1 alleviated the decrease in ZO-1 expression in bEnd.3 cells and the exacerbation of BBB damage induced by PS-NPs. Collectively, our findings suggest that inhibiting ferroptosis in BMECs may serve as a potential therapeutic target against BBB disruption induced by PS-NPs exposure.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Ferroptose , Poliestirenos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Ferroptose/efeitos dos fármacos , Poliestirenos/toxicidade , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Nanopartículas/toxicidade , Masculino
5.
Plant Biotechnol J ; 18(3): 859-871, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31498543

RESUMO

Prefoldin (PFD) is a group II chaperonin that is ubiquitously present in the eukaryotic kingdom. Six subunits (PFD1-6) form a jellyfish-like heterohexameric PFD complex and function in protein folding and cytoskeleton organization. However, little is known about its function in plant cell wall-related processes. Here, we report the functional characterization of a PFD gene from Populus deltoides, designated as PdPFD2.2. There are two copies of PFD2 in Populus, and PdPFD2.2 was ubiquitously expressed with high transcript abundance in the cambial region. PdPFD2.2 can physically interact with DELLA protein RGA1_8g, and its subcellular localization is affected by the interaction. In P. deltoides transgenic plants overexpressing PdPFD2.2, the lignin syringyl/guaiacyl ratio was increased, but cellulose content and crystallinity index were unchanged. In addition, the total released sugar (glucose and xylose) amounts were increased by 7.6% and 6.1%, respectively, in two transgenic lines. Transcriptomic and metabolomic analyses revealed that secondary metabolic pathways, including lignin and flavonoid biosynthesis, were affected by overexpressing PdPFD2.2. A total of eight hub transcription factors (TFs) were identified based on TF binding sites of differentially expressed genes in Populus transgenic plants overexpressing PdPFD2.2. In addition, several known cell wall-related TFs, such as MYB3, MYB4, MYB7, TT8 and XND1, were affected by overexpression of PdPFD2.2. These results suggest that overexpression of PdPFD2.2 can reduce biomass recalcitrance and PdPFD2.2 is a promising target for genetic engineering to improve feedstock characteristics to enhance biofuel conversion and reduce the cost of lignocellulosic biofuel production.


Assuntos
Biomassa , Chaperonas Moleculares/genética , Populus/genética , Genes de Plantas , Lignina , Plantas Geneticamente Modificadas
6.
BMC Infect Dis ; 20(1): 271, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264839

RESUMO

BACKGROUND: Hand, foot, and mouth disease (HFMD) is a common infectious disease occurring in children under 5 years of age worldwide, and Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CVA-16) are identified as the predominant pathogens. In recent years, Coxsackievirus A6 (CVA-6) and Coxsackievirus A10 (CVA-10) have played more and more important role in a series of HFMD outbreaks. This study aimed to understand the epidemic characteristics associated with HFMD outbreak in Guangzhou, 2018. METHODS: The clinical and laboratory data of 1220 enterovirus-associated HFMD patients in 2018 were analysed in this study. Molecular diagnostic methods were performed to identify its serotypes. Phylogenetic analyses were depicted based on the complete VP1 gene. RESULTS: There were 21 enterovirus serotypes detected in Guangzhou in 2018. Three serotypes of enterovirus, CVA-6 (364/1220, 29.8%), CVA-10 (305/1220, 25.0%), and CVA-16 (397/1220, 32.5%), were identified as the causative pathogens and accounted for 87.3% among all 1220 HFMD patients. In different seasons, CVA-6 was the predominant pathogen of HFMD during autumn, and CVA-10 as well as CVA-16 were more prevalent in summer. Patients infected by CVA-6, CVA-10 or CVA-16 showed similar clinical features and laboratory characteristics, and the ratios of severe HFMD were 5.8, 5.9, and 1.5% in the three serotypes. Phylogenetic analyses of VP1 sequences showed that the CVA-6, CVA-10, and CVA-16 sequences belonged to the sub-genogroup E2, genogroup E, and genogroup B1, respectively. CONCLUSIONS: CVA-6, CVA-10, and CVA-16 were the predominant and co-circulated serotypes in Guangzhou China, 2018, which should be the new target for prevention and control of HFMD. Our findings provide useful information for diagnosis, treatment, and prevention of HFMD.


Assuntos
Enterovirus Humano A/classificação , Enterovirus Humano A/genética , Epidemias , Doença de Mão, Pé e Boca/epidemiologia , Sequência de Bases/genética , Proteínas do Capsídeo/genética , Criança , Pré-Escolar , China/epidemiologia , Feminino , Genótipo , Doença de Mão, Pé e Boca/virologia , Humanos , Lactente , Masculino , Filogenia , Prevalência , Estações do Ano , Sorogrupo
7.
BMC Plant Biol ; 19(1): 486, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711424

RESUMO

BACKGROUND: Plant secondary cell wall is a renewable feedstock for biofuels and biomaterials production. Arabidopsis VASCULAR-RELATED NAC DOMAIN (VND) has been demonstrated to be a key transcription factor regulating secondary cell wall biosynthesis. However, less is known about its role in the woody species. RESULTS: Here we report the functional characterization of Populus deltoides WOOD-ASSOCIATED NAC DOMAIN protein 3 (PdWND3A), a sequence homolog of Arabidopsis VND4 and VND5 that are members of transcription factor networks regulating secondary cell wall biosynthesis. PdWND3A was expressed at higher level in the xylem than in other tissues. The stem tissues of transgenic P. deltoides overexpressing PdWND3A (OXPdWND3A) contained more vessel cells than that of wild-type plants. Furthermore, lignin content and lignin monomer syringyl and guaiacyl (S/G) ratio were higher in OXPdWND3A transgenic plants than in wild-type plants. Consistent with these observations, the expression of FERULATE 5-HYDROXYLASE1 (F5H1), encoding an enzyme involved in the biosynthesis of sinapyl alcohol (S unit monolignol), was elevated in OXPdWND3A transgenic plants. Saccharification analysis indicated that the rate of sugar release was reduced in the transgenic plants. In addition, OXPdWND3A transgenic plants produced lower amounts of biomass than wild-type plants. CONCLUSIONS: PdWND3A affects lignin biosynthesis and composition and negatively impacts sugar release and biomass production.


Assuntos
Lignina/biossíntese , Proteínas de Plantas/genética , Populus/genética , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Lignina/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Populus/química , Populus/metabolismo , Fatores de Transcrição/metabolismo
8.
J Bone Miner Metab ; 37(4): 584-593, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30238429

RESUMO

CBX7 is shown to down-regulate the expression of osteopontin (OPN) that is associated with osteoblast function. Here, we studied the role of CBX7 in the wound healing of tooth extraction socket in which osteoblast activity is critical via comparison between CBX7-knockout (CBX7-/-) mice and their wild-type (WT) counterparts of 6 weeks old with maxillary first molar extracted. Mice were euthanized at 7, 14, and 21 days after extractions, and alveolar sockets were assessed by semi-quantitative histomorphometry for hard tissue healing, including new bone fill (Masson's trichrome staining), osteoblast activity (OPN/osterix, Osx), osteoclast activity (tartrate-resistant acid phosphatase, TRAP), and for soft tissue healing, including blood vessels (alpha smooth muscle actin, α-SMA). Also, the bone microarchitecture was evaluated by micro-CT. In radiological analysis, CBX7-/- mice increased bone mass significantly more than WT mice did. Consistently, both the amount of new bone fill and OPN/Osx-immunopositive cells in the extraction sockets were significantly increased in CBX7-/- mice at each time point with respect to their WT siblings, while osteoclast number exhibited a trend of more increase in CBX7-/- mice at all time points as well. In agreement with enhanced bone formation during socket healing, significantly elevated α-SMA-immunopositive area was noted in CBX7-/- mice in contrast to WT mice. Taken together, these data suggest that CBX7 deficiency has a positive effect on tooth extraction socket healing.


Assuntos
Complexo Repressor Polycomb 1/deficiência , Extração Dentária , Alvéolo Dental/patologia , Cicatrização , Animais , Densidade Óssea , Reabsorção Óssea/patologia , Masculino , Camundongos Knockout , Neovascularização Fisiológica , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Complexo Repressor Polycomb 1/metabolismo , Fatores de Tempo , Alvéolo Dental/irrigação sanguínea , Alvéolo Dental/diagnóstico por imagem , Alvéolo Dental/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
9.
Plant Biotechnol J ; 14(10): 2010-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26997157

RESUMO

Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.


Assuntos
Parede Celular/química , Lacase/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Populus/enzimologia , Populus/genética , Parede Celular/enzimologia , Parede Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Lacase/genética , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Xilose/metabolismo
10.
J Nanosci Nanotechnol ; 15(3): 2204-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413641

RESUMO

This report investigates the influence of the solution blend composition of binary bulk heterojunction organic solar cells composed of poly(2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H- cyclopenta[2,1-b:3,4-b'dithiophene-2,6-diy]] (PCPDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM). The blend polymer:fullerene composition was varied from 1:1 (50 wt% PC71 BM) to 2:9 (82 wt% PC71 BM). Increasing the amount of polymer in the blend results in the greatest overall absorption, as the donor material PCPDTBT is the main contributor to absorption. However, high polymer content leads to poor photovoltaic performance. For this material combination, the optimum blend polymer:fullerene composition was found to be 2:7. Increasing the fullerene content in the blend led to a significant improvement in the internal quantum efficiency of devices. This was correlated with an increase of the electron mobility, as the fullerene content was increased. Improved electron transport, leading to more balanced transport between electrons and holes, significantly improved the short circuit current density (Jsc) and fill factor (FF).


Assuntos
Fontes de Energia Elétrica , Polímeros/química , Energia Solar , Tiadiazóis/química , Eletroquímica , Transporte de Elétrons , Fulerenos/química
11.
Int J Biol Macromol ; 254(Pt 3): 127941, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951438

RESUMO

Sexually transmitted diseases (STDs) are usually caused by co-infections of bacteria and viruses. However, there is a lack of products that possess both antibacterial and antiviral activities without using chemical drugs. Here, we developed a carrageenan silver nanoparticle composite hydrogel (IC-AgNPs-Gel) based on the antiviral activity of iota carrageenan (IC) and the antibacterial effect of silver nanoparticles (AgNPs) to prevent STDs. IC-AgNPs-Gel showed excellent biocompatibility, hemostasis, antibacterial and antiviral effects. IC-AgNPs-Gel not only effectively prevented S. aureus, E. coli, P. aeruginosa, and C. albicans without using antibiotics, but also significantly inhibited human papilloma virus (HPV)-16 and HPV-6 without using chemotherapy drugs. Moreover, IC-AgNPs-Gel showed the effects of accelerating infected wound healing and reducing inflammation in a rat wound model infected with S. aureus. Therefore, the multifunctional hydrogel shows great potential application prospect in preventing STDs.


Assuntos
Nanopartículas Metálicas , Infecções Sexualmente Transmissíveis , Ratos , Animais , Humanos , Carragenina/química , Prata/farmacologia , Prata/química , Nanogéis , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Hidrogéis/farmacologia , Hidrogéis/química , Antivirais/farmacologia
12.
Water Res ; 252: 121246, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340454

RESUMO

The detachment of microplastics (MPs) from porous media under different moisture conditions and flow regimes has garnered limited attention within the research community. The present study investigates the detachment of MPs from porous media under wet and dry conditions combined with steady and transient flow. For both the wet and dry conditions, the increase in flow rates is found to decrease the detachment of hydrophobic polyethylene of two sizes and of hydrophilic polymethylmethacrylate. Intermittent flow is found to result in effluent peaks and a higher rate of MP detachment compared to steady flow. The ionic strength of inflow drops in a stepwise manner, leading to abrupt peaks followed by a tail corresponding to the arrival of each ionic strength front. Each step increase in flow rate leads to a steep peak followed by slow release over several pore volumes. Although transient flow facilitates the detachment of MPs, drying significantly impedes the detachment of MPs irrespective of flow regime. Ultraviolet weathering of MPs for 60 days weakens the inhibition effect of drying on hydrophilic polymethylmethacrylate, facilitating their detachment. Furthermore, the release of MPs decreases markedly with an increase in air-drying duration from 0 h to 72 h. Hydrus-1D two-site kinetic models are used to successfully simulate time-dependent processes, implying that drying heightens the energy barrier for MPs to detach. Our analysis confirms the significance of moisture in determining the remobilization of MPs, providing valuable insights concerning the fate of MPs in unsaturated substrate under prolonged drought conditions.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Polimetil Metacrilato , Dessecação , Polietileno
13.
Water Res ; 236: 119970, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084574

RESUMO

In the present study, the infiltration and resuspension of microplastics (MPs) in a slope substrate under the influence of repeated tidal forces were investigated using a tidal tank. In the scenario in which MPs were placed on the top of the slope, increasing numbers of particles were observed on the water surface with the increase in tidal cycles. More particles of smaller equivalent particle diameter (dMP) and low density floated to the water surface. The horizontal positions (positive toward the lower tide zone) of MPs showed significant positive correlation with the shortest length c of MPs, MP density, MP weight, dMP, and Corey shape factor, whereas they showed significant negative correlation with the rate of tidal level change and the longest length a of MPs. The vertical positions (positive in the downward direction) of MPs showed significant positive correlation with the shortest length c of MPs, MP density, MP weight, dMP, and Corey shape factor, while they demonstrated significant negative correlation with the largest cross-section area and surface tension of MPs. In the scenario in which MPs were placed at the bottom of the tank, the smaller and low-density particles had a higher possibility of moving upward to the water surface under repeated tidal forces. High-density particles also migrated to the water surface due to the surface tension force. Further, a lower rate of tidal level change contributed to more floating of particles. The horizontal positions of MPs showed significant positive correlation with MP density, while they demonstrated significant negative correlation with the largest cross-section area and surface tension of MPs. The vertical positions of MPs showed significant positive correlation with the longest length a of MPs, MP density, MP weight, and dMP. These results imply that large, high-density, and less flatty particles tend to be distributed in the lower tidal zone and deeper substrate layers. These findings can help understand the redistribution of MPs and assess their risk in the shoreline environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água
14.
Sci Total Environ ; 905: 167137, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734618

RESUMO

Mask waste can affect the natural environment and human health. In this study, the life cycle assessment (LCA) of two types of face masks (Polylactic acid (PLA) and Polypropylene (PP)) was first performed to evaluate the environmental impacts from production to end-of-life, and then, greenhouse gas (GHG) emissions were estimated for each life stage. The GHG emissions for one functional unit of PP and PLA face masks were estimated to be 6.27E+07 and 5.06E+07 kg CO2 eq, respectively. Explicitly, PLA mask production emissions are 37 % lower as compared to those for PP masks. Packaging has been recognized as a major GHG source throughout the product's life cycle. This study may provide a new insight into the environmental benefits of reducing GHG emissions within PLA face mask life cycles. Biodegradable and environmentally friendly materials can be used in the manufacturing and packaging of face masks.


Assuntos
Máscaras , Polipropilenos , Humanos , Meio Ambiente , Poliésteres , Efeito Estufa
15.
Mar Pollut Bull ; 193: 115234, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399736

RESUMO

Oil deposited on shoreline substrates has serious adverse effects on the coastal environment and can persist for a long time. In this study, a green and effective microemulsion (ME) derived from vegetable oil was developed as a washing fluid to remove stranded oil from beach sand. The pseudo-ternary phase diagrams of the castor oil/water (without or without NaCl)/Triton X-100/ethanol were constructed to determine ME regions, and they also demonstrated that the phase behaviors of ME systems were almost independent of salinity. ME-A and ME-B exhibited high oil removal performance, low surfactant residues, and economic benefits, which were determined to be the W/O microstructure. Under optimal operation conditions, the oil removal efficiencies for both ME systems were 84.3 % and 86.8 %, respectively. Moreover, the reusability evaluation showed that the ME system still had over 70 % oil removal rates, even though it was used six times, implying its sustainability and reliability.


Assuntos
Areia , Tensoativos , Reprodutibilidade dos Testes , Emulsões/química , Tensoativos/química , Octoxinol
16.
Water Res ; 224: 119077, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113238

RESUMO

Since nearly half of the world's population lives near the coast, coastal areas have become hotspots for microplastic (MP) pollution due to human activity. The ubiquity of natural colloids in coastal waters plays a critical role in the potential fate of, and risks posed by, MPs. Nevertheless, far less has been known regarding the aggregation of MPs with inorganic natural clay colloids, especially in the complicated nearshore environment. In this study, the aggregation behavior of MPs as well as the interaction between MPs and clay particles were investigated under different nearshore environmental conditions (MP-to-clay ratio, salinity gradient, humic acid concentration, and wave energy). The aggregation behavior was subjected by the repulsive energy barrier between particles and external energy transferred to the system. The low energy associated with mild wave conditions was favorable for the occurrence of aggregation, whereas sustained high energy under intense wave conditions was found to be detrimental to the aggregation behavior, and the aggregates were prone to fragmentation even if particles coalesced into large clusters. The analysis for the environmental fate of MPs demonstrated that the shoreline was likely to be the sink for most MPs ultimately.


Assuntos
Microplásticos , Poluentes Químicos da Água , Argila , Coloides/análise , Monitoramento Ambiental , Humanos , Substâncias Húmicas/análise , Plásticos/análise , Poluentes Químicos da Água/análise
17.
Shanghai Kou Qiang Yi Xue ; 30(6): 595-598, 2021 Dec.
Artigo em Zh | MEDLINE | ID: mdl-35587013

RESUMO

PURPOSE: To explore the application value of three reciprocating single nickel-titanium instruments in preparation of simulated curved root canals. METHODS: One hundred and fifteen single-curved resin simulation root canals were selected and divided into Reciproc group (group A, 28), One file group (group B, 29), Wave One group (group C, 29) and control group (group D, 29) by random graph method. The simulated root canals were prepared according to the specifications of the instructions, root canal preparation, resin removal, root canal cleaning effect, center positioning ability and root canal width were compared. SPSS 22.0 software package was used for statistical analysis. RESULTS: There was no significant difference in quality and curvature among four groups(P>0.05). The difference in root canal preparation time among the four groups was statistically significant (P<0.05), and the root canal preparation time in group B was the shortest(P<0.05). Comparison of resin removal at the root canal orifice and the midpoint of the bending start point among four groups, the difference was statistically significant(P<0.05). The root canal wall debris scores and smear layer scores in four groups were significantly different(P<0.05). Compared with group A, B and D, the root canal wall debris scores of the crown, middle and tip of group C were the lowest, the scores of smear layer on the crown and middle of the root canal wall was the lowest(P<0.05). There was no significant difference in the center positioning ability of the four groups at 5 mm, 6 mm and 7 mm from the apical foramen(P>0.05). There was no significant difference in root canal width among four groups (P>0.05). CONCLUSIONS: Reciproc, One file and Wave One reciprocating single nickel-titanium instruments can maintain the original shape of the simulated root canal. Compared with Reciproc and Wave One, One file has better root canal shaping ability and cleaning effect.


Assuntos
Níquel , Camada de Esfregaço , Instrumentos Odontológicos , Cavidade Pulpar , Desenho de Equipamento , Humanos , Preparo de Canal Radicular/métodos , Titânio
18.
Front Microbiol ; 12: 629533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613499

RESUMO

Hand, foot, and mouth disease (HFMD) is a common infectious disease affecting mainly children under 5 years of age. Coxsackievirus A6 (CVA-6), a major causative pathogen of HFMD, has caused outbreaks in recent years. Currently, no effective vaccine or antiviral treatments are available. In this study, one-step reverse-transcription recombinase polymerase amplification (RT-RPA), combined with a disposable lateral flow strip (LFS) assay, was developed to detect CVA-6. This assay can be performed in less than 35 min at 37°C without expensive instruments, and the result can be observed directly with the naked eye. The sensitivity of the RT-RPA-LFS was 10 copies per reaction, which was comparable to that of the conventional real-time quantitative polymerase chain reaction (qPCR) assays. Moreover, the assay specificity was 100%. The clinical performance of the RT-RPA-LFS assay was evaluated using 142 clinical samples, and the coincidence rate between RT-RPA-LFS and qPCR was 100%. Therefore, our RT-RPA-LFS assay provides a simple and rapid approach for point-of-care CVA-6 diagnosis.

19.
J Mol Histol ; 51(1): 55-65, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32006186

RESUMO

p53 is known to advance the cell arrest and cell senescence in human tumors. In this study, we displayed that osteogenic ability of p53-knockout (p53-/-) mice was significantly increased in the tooth extraction socket compared with wild-type (WT) counterparts. Bone marrow mesenchymal stem cells (BM-MSCs) from mandibular were collected and exhibited with elevated proliferation potential and colony-forming units compared with the control, as well as stronger mineral deposits and osteogenic markers. Besides, the bone mass and bone parameter in p53-/- mice were markedly enhanced compared with the counterpart after extractions by micro-CT. Masson's trichrome staining and immunohistochemistry also revealed that new bone filling and osterix/osteocalcin (Osx/OCN)-immunopositive staining in p53-/- mice were remarkably increased at each time point. Furthermore, consistent with the enhanced osteogenic markers, the angiogenic marker of blood vessels (alpha smooth muscle actin, α-SMA) was significantly elevated in p53-/- mice in contrast to WT mice. Importantly, we found that the osteoclast numbers exhibited an increased trend in p53-/- mice compared with WT mice during socket healing. Collectively, our result suggest that p53 deficiency could promote the osteogenesis and angiogenesis in the tooth extraction socket and might lend possibility for p53-based therapeutic approaches in acceleration of extraction bone healing.


Assuntos
Osteoclastos , Extração Dentária , Alvéolo Dental , Proteína Supressora de Tumor p53/deficiência , Cicatrização , Animais , Antígenos de Diferenciação/biossíntese , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/genética , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/genética , Alvéolo Dental/metabolismo , Alvéolo Dental/patologia , Proteína Supressora de Tumor p53/metabolismo
20.
ACS Biomater Sci Eng ; 6(6): 3361-3374, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463181

RESUMO

Multifunctional nanoparticles for imaging and treatment in cancer are getting more and more attention recently. Herein, halloysite nanotubes (HNTs), natural clay nanotubes, are designed as multifunctional nanoplatform for targeted delivering photothermal therapy agents and chemotherapeutic drugs. Fe3O4 was anchored on the outer surfaces of HNTs and then doxorubicin (DOX) was loaded on the nanotubes. Afterward, a layer of polypyrrole (PPy), as photothermal agent, was wrapped on the tubes. The nanoplatform of HNT@Fe3O4@PPy@DOX can be guided to tumor tissue by an external magnetic field, and then performs chemo-photothermal combined therapy by 808 nm laser irradiation. HNT@Fe3O4@PPy@DOX shows the ability of T2-weighted magnetic resonance imaging, which could be considered as a promising application in magnetic targeting tumor therapy. In vitro and in vivo experiments demonstrate that HNTs nanoplatform has good biocompatibility and produces a strong antitumor effect trigged by near-infrared laser irradiation. The novel chemo-photothermal therapy nanoplatform based on HNTs may be developed as a multifunctional nanoparticle for imaging and therapy in breast cancer.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Neoplasias da Mama/diagnóstico por imagem , Doxorrubicina , Humanos , Imageamento por Ressonância Magnética , Polímeros , Pirróis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA