Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biomacromolecules ; 24(8): 3522-3531, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37285477

RESUMO

Nowadays, the development of effective modification methods for PLA has gained significant interest because of the wide application of antimicrobial PLA materials in the medical progress. Herein, the ionic liquid (IL) 1-vinyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide, has been grafted onto the PLA chains successfully in the PLA/IL blending films via electron beam (EB) radiation for the miscibility between PLA and IL. It was found that the existence of IL in the PLA matrix can significantly improve the chemical stability under EB radiation. The Mn of PLA-g-IL copolymer did not change obviously but was just decreased from 6.80 × 104 g/mol to 5.20 × 104 g/mol after radiation with 10 kGy. The obtained PLA-g-IL copolymers showed excellent filament forming property during electrospinning process. The spindle structure on the nanofibers can be completely eliminated after feeding only 0.5 wt % ILs for the improvement of ionic conductivity. Specially, the prepared PLA-g-IL nonwovens exhibited outstanding and durable antimicrobial activity for the enrichment of immobilized ILs on the nanofiber surface. This work provides a feasible strategy to realize the modification of functional ILs onto PLA chains with low EB radiation doses, which may have huge potential application in the medical and packaging industry.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Polímeros , Poliésteres , Anti-Infecciosos/farmacologia
2.
Phytother Res ; 35(11): 6401-6416, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34585457

RESUMO

Although renal fibrosis is a common complication of chronic kidney disease (CKD), effective options for its treatment are currently limited. In this study, we evaluated the renal protective effect and possible mechanism of eleutheroside B. In order to solve the allergic reactions, side effects, and low oral bioavailability of eleutheroside B, we successfully prepared PLGA (poly [lactic-co-glycolic acid])-eleutheroside B nanoparticles (NPs) with the diameter of about 128 nm. In vitro and in vivo results showed that eleutheroside B could inhibit expression levels of α-smooth muscle actin (α-SMA) and collagen I. Molecular docking results showed that eleutheroside B bound to Smad3 and significantly decreased the expression of phospho-Smad3 (p-Smad3). Silencing Smad3 reversed the fibrotic protective effect of eleutheroside B in HK2 cells. Furthermore, small animal imaging showed that NPs can selectively accumulate in the UUO kidneys of mice, and retention time reached as long as 7 days. In conclusion, our results suggested that eleutheroside B is a potential drug to protect renal fibrosis and PLGA-eleutheroside B NPs could facilitate specific targeted therapy for renal fibrosis.


Assuntos
Fibrose , Nefropatias , Nanopartículas , Animais , Glucosídeos , Glicolatos , Nefropatias/tratamento farmacológico , Camundongos , Simulação de Acoplamento Molecular , Fenilpropionatos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteína Smad3
3.
Int Immunopharmacol ; 128: 111558, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266446

RESUMO

Periodontitis, which is related to various systemic diseases, is a chronic inflammatory disease caused by periodontal dysbiosis of the microbiota. Multiple factors can influence the interaction of periodontitis and associated inflammatory disorders, among which host immunity is an important contributor to this interaction. Innate immunity can be activated aberrantly because of the systemic inflammation induced by periodontitis. This aberrant activation not only exacerbates periodontal tissue damage but also impairs systemic health, triggering or aggravating inflammatory comorbidities. Therefore, innate immunity is a potential therapeutic target for periodontitis and associated inflammatory comorbidities. This review delineates analogous aberrations of innate immune cells in periodontitis and comorbid conditions such as atherosclerosis, diabetes, obesity, and rheumatoid arthritis. The mechanisms behind these changes in innate immune cells are discussed, including trained immunity and clonal hematopoiesis of indeterminate potential (CHIP), which can mediate the abnormal activation and myeloid-biased differentiation of hematopoietic stem and progenitor cells. Besides, the expansion of myeloid-derived suppressor cells (MDSCs), which have immunosuppressive and osteolytic effects on peripheral tissues, also contributes to the interaction between periodontitis and its inflammatory comorbidities. The potential treatment targets for relieving the risk of both periodontitis and systemic conditions are also elucidated, such as the modulation of innate immunity cells and mediators, the regulation of trained immunity and CHIP, as well as the inhibition of MDSCs' expansion.


Assuntos
Diabetes Mellitus , Periodontite , Humanos , Inflamação , Imunidade Inata , Periodonto
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122150, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36459721

RESUMO

Periodontitis is one of the most prevalent dental diseases, and the patients with periodontitis often suffer from refractory periodontitis or recurrence of disease due to improper or inadequate treatment. In clinical practice, the early and accurate assessment of post-treatment prognosis in periodontitis patients is always very important in order to implement timely interventions. In this study, a pre-treatment saliva SERS based prognostic protocol was explored to predict the prognosis of periodontal non-surgery therapy in periodontitis patients. According to the biomolecular analysis, significant differences in the levels of ascorbic acid, uric acid and glutathione are observed between good prognosis group and poor prognosis group, which are expected to serve as potential prognostic markers. Furthermore, high accuracy, sensitivity and specificity can also be achieved by using the proposed prognostic model. The excellent performance of the proposed method has demonstrated its potential for fast, accurate, and non-invasive prognostic prediction of periodontal non-surgery therapy in periodontitis patients, even at the time before implementing treatment, thus is expected to benefit timely and rational guidance on clinical interventions.


Assuntos
Periodontite , Saliva , Humanos , Prognóstico , Saliva/química , Periodontite/diagnóstico , Periodontite/cirurgia , Glutationa/análise , Ácido Úrico/análise
5.
Colloids Surf B Biointerfaces ; 198: 111473, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33250417

RESUMO

Cellular responses can be regulated and manipulated through combining stimuli-responsive biomaterial with external stimulus. In this present, the magneto-responsive CoFe2O4/P(VDF-TrFE) nanocomposite coatings were designed to understand cell behaviors of preosteoblasts, as well as get insight into the underlying mechanism of osteogenic differentiation under static magnetic field (SMF). CoFe2O4/P(VDF-TrFE) nanocomposite coatings with differential magnetic property (low, medium and high magnetization) were prepared by incorporation of different mass fraction of CoFe2O4 nanoparticles (6%, 13 %, 20 %) into P(VDF-TrFE) matrix. Cell experiments indicated that all nanocomposite coatings with the assistance of SMF could promote the cell attachment, proliferation and osteogenic differentiation of MC3T3-E1 cells. Among different nanocomposite coatings, low magnetization coating (6%) showed a higher ALP activity and gene expression of Runx2, Col-I, OCN. Molecular biology assays demonstrated that the combination of nanocomposite coatings and SMF could significantly up-regulate the expression level of α2ß1 integrin and p-ERK. Whereas, the addition of inhibitor U0126 down-regulated sharply the expression level of p-ERK, which indicated that cellular osteogenic differentiation of MC3T3-E1 cells was governed through α2ß1 integrin-mediated MEK/ERK signaling pathways during CoFe2O4/P(VDF-TrFE) nanocomposite coatings were combined with SMF. This work provided a promising strategy to enhance cellular osteogenic differentiation through a remote-control manner, which exhibited great potential in the application of bone tissue repair and regeneration.


Assuntos
Nanocompostos , Osteogênese , Materiais Biocompatíveis , Diferenciação Celular , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA