Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889449

RESUMO

Geopolymers, as a kind of inorganic polymer, possess excellent properties and have been broadly studied for the stabilization/solidification (S/S) of hazardous pollutants. Even though many reviews about geopolymers have been published, the summary of geopolymer-based S/S for various contaminants has not been well conducted. Therefore, the S/S of hazardous pollutants using geopolymers are comprehensively summarized in this review. Geopolymer-based S/S of typical cations, including Pb, Zn, Cd, Cs, Cu, Sr, Ni, etc., were involved and elucidated. The S/S mechanisms for cationic heavy metals were concluded, mainly including physical encapsulation, sorption, precipitation, and bonding with a silicate structure. In addition, compared to cationic ions, geopolymers have a poor immobilization ability on anions due to the repulsive effect between them, presenting a high leaching percentage. However, some anions, such as Se or As oxyanions, have been proved to exist in geopolymers through electrostatic interaction, which provides a direction to enhance the geopolymer-based S/S for anions. Besides, few reports about geopolymer-based S/S of organic pollutants have been published. Furthermore, the adsorbents of geopolymer-based composites designed and studied for the removal of hazardous pollutants from aqueous conditions are also briefly discussed. On the whole, this review will offer insights into geopolymer-based S/S technology. Furthermore, the challenges to geopolymer-based S/S technology outlined in this work are expected to be of direct relevance to the focus of future research.


Assuntos
Poluentes Ambientais , Metais Pesados , Cinza de Carvão/química , Metais Pesados/química , Polímeros/química , Silicatos
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(3): 276-283, 2023 Jun 01.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-37277793

RESUMO

OBJECTIVES: The current study aimed to investigate the bonding properties of a novel low-shrinkage resin adhesive containing expanding monomer and epoxy resin monomer after thermal cycling aging treatment. METHODS: Expanding monomer of 3,9-diethyl-3,9-dimethylol-1,5,7,11-tetraoxaspiro-[5,5] undecane (DDTU) as an anti-shrinkage additive and unsaturated epoxy monomer of diallyl bisphenol A diglycidyl ether (DBDE) as a coupling agent were synthesized. A blend of DDTU and DBDE at a mass ratio of 1∶1, referred to as "UE", was added into the resin matrix at the mass fraction of 20% to prepare a novel low-shrinkage resin adhesive.Then, the methacrylate resin adhesive without UE was used as the blank control group, and a commercial resin adhesive system was selected as the commercial control group. Moreover, the resin-dentin bonding and micro-leakage testing specimens were prepared for the thermal cycling aging treatment. The bonding strength was tested, the fracture modes were calculated, the bonding fracture surface was observed by scanning electron microscope (SEM), and the dye penetration was used to evaluate the tooth-restoration marginal interface micro-leakage. All the data were analyzed statistically. RESULTS: After aging, the dentin bonding strength of the experimental group was (19.20±1.03) MPa without a significant decrease (P>0.05), that of the blank control group was (11.22±1.48) MPa with a significant decrease (P<0.05) and that of the commercial control group was (19.16±1.68) MPa without a significant decrease (P>0.05). The interface fracture was observed as the main fracture mode in each group after thermal cycling by SEM. The fractured bonding surfaces of the experimental group often occurred on the top of the hybrid layer, whereas those of the blank and commercial control groups mostly occurred on the bottom of the hybrid layer. Micro-leakage rating counts of specimens before and after thermal cycling were as follows: the experimental group was primarily 0 grade, thereby indicating that a relatively ideal marginal sealing effect could be achieved (P>0.05); meanwhile, the blank control group was primarily 1 grade, and the penetration depth of dye significantly increased after thermal cycling (P<0.05); the commercial control group was primarily 0 grade without statistical difference before and after thermal cycling (P>0.05), while a significant difference was observed between the commercial control group and experimental group after thermal cycling (P<0.05). CONCLUSIONS: The novel low-shrinkage resin adhesive containing 20%UE exhibited excellent bonding properties even after thermal cycling aging treatment, thereby showing a promising prospect for dental application.


Assuntos
Resinas Compostas , Colagem Dentária , Cimentos Dentários , Propriedades de Superfície , Cimentos de Resina , Adesivos Dentinários , Dentina , Teste de Materiais , Microscopia Eletrônica de Varredura
3.
Dent Mater ; 39(11): 1040-1050, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37777432

RESUMO

OBJECTIVE: Dental resin composites have been the most popular materials for repairing tooth decay in recent years. However, secondary caries and bulk fracture are the major hurdles that affect the lifetime of dental resin composites. This current study synthesized a novel antimicrobial and self-healing dental resin containing nanoparticle-modified self-healing microcapsules to combat secondary caries and restoration fracture. METHODS: Multifunctional dental resins containing 0-20% nanoparticle-modified self-healing microcapsules were prepared. The water contact angle, antimicrobial properties, mechanical properties, cell toxicity, and self-healing capability of the dental resins were tested. RESULTS: A novel multifunctional dental resin was synthesized. When the microcapsule mass fraction was 10%, the resin presented a strong bacteriostasis rate (80.3%) and excellent self-healing efficiency (66.1%), while the hydrophilicity, mechanical properties, and cell toxicity were not affected. SIGNIFICANCE: The novel antimicrobial self-healing dental resin is a promising candidate for use in clinical practice, which provides a simple and highly efficient strategy to combat secondary caries and restoration fracture. This novel dental resin also gives the inspiration to prolong the service life of dental restorations.

4.
J Mech Behav Biomed Mater ; 148: 106212, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37913623

RESUMO

Dental resin restorations commonly fail because of fractures and secondary caries. The aim of this research was to synthesize a novel low-shrinkage dental resin with antibacterial and self-healing properties. The low-shrinkage dental resin was obtained by incorporating a 20 wt% anti-shrinkage mixture of an expanding monomer 3,9-diethyl-3,9-dimethylol -1,5,7,11-tetraoxaspiro[5,5] undecane and an epoxy resin monomer diallyl bisphenol A diglycidyl ether (1:1, referred as "UE") and different mass fractions of self-healing antibacterial microcapsules (0%, 2.5%, 5%, 7.5%, and 10%) were incorporated into the matrix to prepare multifunctional dental resin. Polymerization shrinkage, mechanical properties, antibacterial activity, self-healing ability, and cytotoxicity of this dental resin were evaluated. The polymerization volumetric shrinkage of resin containing 20 wt% UE and 7.5 wt% microcapsules was reduced by 30.12% (4.13% ± 0.42%) compared with control. Furthermore, it exhibited high antibacterial activity and a good self-healing efficiency of 71% without adversely affecting the mechanical property and cell viability. This novel multifunctional dental resin with low polymerization shrinkage and excellent antibacterial activity and self-healing capability has potential application as a dental resin material to decrease the incidence of fractures and secondary caries.


Assuntos
Antibacterianos , Resinas Compostas , Cápsulas , Teste de Materiais , Antibacterianos/farmacologia , Polimerização , Metacrilatos
5.
Dent Mater ; 38(8): 1301-1315, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718598

RESUMO

OBJECTIVE: Although microcapsules (MCs) have been used for dental resins to achieve self-healing capabilities, the fragile organic shell and single healing event functions during the service period limit their use. Herein, a novel nanoparticle-modified MC with a nano-antibacterial inorganic filler (NIF) containing a quaternary ammonium salt was synthesized to address these issues. METHODS: MCs with 0 %-30 % NIFs were prepared via an in situ polymerization method and characterized their morphology, chemical composition, thermal stability, roughness, mechanical properties, and antibacterial effect. Subsequently, M-10 MCs were mixed into the resin matrix at a mass fraction of 7.5 %. The self-healing capability and cytotoxicity were evaluated. RESULTS: The introduction of nanomaterials enhances the shell of the MCs and endows them with an antibacterial effect. With the addition of NIFs, the roughness, modulus, and hardness values of MCs all increased (p < 0.05). The presence of M-10 MCs reduced the CFU by 2-3 orders of magnitude compared to the control group. The dental resin containing 7.5 % M-10 MCs obtained almost 69 % self-healing efficiency, without significantly compromising cell viability (p < 0.05). SIGNIFICANCE: Self-healing MCs with NIFs were prepared for the first time with strong antibacterial properties, a substantial self-healing capability, and low toxicity. This multifunctional MC is a promising candidate for use in dental resins to extend the service life and resolve the problem of bulk fracture and secondary caries.


Assuntos
Resinas Compostas , Nanopartículas , Antibacterianos/farmacologia , Cápsulas , Resinas Compostas/química , Resinas Compostas/farmacologia , Compostos de Amônio Quaternário/farmacologia
6.
J Mech Behav Biomed Mater ; 133: 105308, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35709601

RESUMO

Polymerization shrinkage is one of the main drawbacks of dental resin adhesives. In this study, spiroorthocarbonate expanding monomer 3,9-diethyl-3,9-dimethylol -1,5,7,11-tetraoxaspiro-[5,5] undecane (DDTU) and unsaturated epoxy resin monomer Diallyl bisphenol A diglycidyl ether (DBDE) were synthesized and utilized as anti-shrinkage-coupling additive of methacrylate-based adhesives. Polymerization process and physicochemical properties including double bond conversion, polymerization shrinkage, compatibility, mechanical performance, thermal stability, contact angle, shear bond strength and cytotoxicity were characterized. Results indicated that adhesives containing anti-shrinkage-coupling additive had reduced volume shrinkage, improved compatibility and enhanced shear bond strength. When the amount of additive was 20 wt%, the volume shrinkage was decreased by 45.8% (4.17 ± 0.32%) and the shear bond strength was increased by 49.6% (19.64 ± 0.99 MPa). The results also showed that the use of additive had no adversely affect on double bond conversion and cytotoxicity. Therefore, novel low-shrinkage resin adhesives were prepared via blending with spiroorthocarbonate expanding monomer and unsaturated epoxy resin monomer.


Assuntos
Resinas Compostas , Resinas Epóxi , Bis-Fenol A-Glicidil Metacrilato/química , Resinas Compostas/química , Cimentos Dentários , Teste de Materiais , Metacrilatos/química , Polimerização
7.
Dent Mater ; 38(12): 1989-2002, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424206

RESUMO

OBJECTIVES: Secondary caries is the primary issue that causes restoration failure. The objectives of this study were to: (1) synthesize silanized hydroxyapatite nanofibers loaded with erythromycin (s-HAFs@EM); (2) evaluate the mechanical property, antibacterial activity, and remineralization capability of the novel dental resin containing s-HAFs@EM. METHODS: s-HAFs were prepared by the solvothermal approach and loaded with EM. Characterization and antibacterial activity were evaluated. Subsequently, s-HAFs@EM were incorporated into dental resin at different mass fractions (5 %, 10 %, 15 %, and 20 %), and then they were submitted to characterization, including mechanical property, antibacterial activity, remineralization capability, and cytotoxicity. RESULTS: s-HAFs@EM were successfully synthesized, and they exhibited excellent antibacterial activity. Resin containing 15 % s-HAFs@EM exhibited the best flexural strength (118.67 ± 15.71 MPa) and elastic modulus (2.02 ± 0.30 GPa) (P < 0.05), which were increased by 65.43 % and 90.7 %, compared to those of neat resin, respectively. Resin with 15-20 % s-HAFs@EM showed high antibacterial rate (>85 %) when compared control group (P < 0.05). Furthermore, resin also exhibited a definite remineralization capability and good biosafety in vitro. SIGNIFICANCE: This novel multifunctional resin with improved mechanical property, desirable antibacterial activity and remineralization capability is promising to combat secondary caries.


Assuntos
Cárie Dentária , Nanofibras , Humanos , Durapatita/farmacologia , Assistência Odontológica , Antibacterianos/farmacologia , Cárie Dentária/tratamento farmacológico , Resinas Sintéticas
8.
Appl Microbiol Biotechnol ; 92(1): 13-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21800031

RESUMO

Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic bacteria exhibit an inherent low tolerance to ethanol and inhibitors in the pretreated biomass, and this is at present the greatest barrier to their industrial application. Further improvement of the properties of thermophilic bacteria, together with the optimization production processes, is equally important for achieving a realistic industrial ethanol production.


Assuntos
Bactérias/metabolismo , Etanol/metabolismo , Lignina/metabolismo , Fermentação , Engenharia Genética , Redes e Vias Metabólicas/genética , Temperatura
9.
Materials (Basel) ; 14(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467576

RESUMO

Polyetheretherketone (PEEK) is an important high-performance thermoplastic. Its excellent strength, stiffness, toughness, fatigue resistance, biocompatibility, chemical stability and radiolucency have made PEEK attractive in dental and orthopedic applications. However, PEEK has an inherently hydrophobic and chemically inert surface, which has restricted its widespread use in clinical applications, especially in bonding with dental resin composites. Cutting edge research on novel methods to improve PEEK applications in dentistry, including oral implant, prosthodontics and orthodontics, is reviewed in this article. In addition, this article also discusses innovative surface modifications of PEEK, which are a focus area of active investigations. Furthermore, this article also discusses the necessary future studies and clinical trials for the use of PEEK in the human oral environment to investigate its feasibility and long-term performance.

10.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 38(1): 75-79, 2020 Feb 01.
Artigo em Zh | MEDLINE | ID: mdl-32037770

RESUMO

Self-healing materials have rapidly developed in recent years to overcome the micro-cracks occurring in the polymer matrix. Self-healing ability offers autonomous crack repairs to prolong the service lives of polymers or polymer composites. As a main approach, extrinsic self-healing materials based on microcapsules have been applied in dentistry recently. This paper comprehensively presented and reviewed the definition and classification of self-healing materials, the synthesis of microcapsules, the calculation of self-healing efficiency, and the application of self-healing materials in dentistry. The future directions of self-healing polymers are also discussed.


Assuntos
Odontologia , Polímeros , Cápsulas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA