Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Chromatogr A ; 1730: 465159, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025022

RESUMO

Based on the adhesion of polyethyleneimine (PEI), a novel PEI/zein co-modified core-shell stationary phase (PEI/Zein@SiO2) was prepared by doping zein to form a composite modification layer. The stationary phase achieved effective separation of nucleosides, bases and antibiotics in hydrophilic interaction mode on account of the hydrophilic groups of composite coating. With the hydrophobicity of zein, the flavones could be separated in reversed-phase mode. In short, the separation and analysis of hydrophilic/hydrophobic compounds were accomplished excellently by the PEI/Zein@SiO2 column with mixed double mode. The prepared chromatographic stationary phase not only avoided the dissolution of zein, but also covered the strong adsorption of some analytes caused by silica hydroxyl groups on the surface of silica spheres. The morphological structure and specific surface area of the material were reflected by various characterization techniques. Hydrophilic/hydrophobic compounds were used as tested analytes to research separation performance and retention mechanisms of PEI/Zein@SiO2 column. The stability and reproducibility of the PEI/Zein@SiO2 stationary phase were satisfied. Therefore, the modification of zein could improve the separation selectivity of stationary phase effectively for complex samples, which had the potential to be one of the significant potential application materials in stationary phase packing.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Polietilenoimina , Dióxido de Silício , Zeína , Zeína/química , Cromatografia Líquida de Alta Pressão/métodos , Polietilenoimina/química , Dióxido de Silício/química , Adsorção , Reprodutibilidade dos Testes
2.
Cancer Commun (Lond) ; 42(1): 3-16, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699693

RESUMO

BACKGROUND: Lipusu is the first commercialized liposomal formulation of paclitaxel and has demonstrated promising efficacy against locally advanced lung squamous cell carcinoma (LSCC) in a small-scale study. Here, we conducted a multicenter, randomized, phase 3 study to compare the efficacy and safety of cisplatin plus Lipusu (LP) versus cisplatin plus gemcitabine (GP) as first-line treatment in locally advanced or metastatic LSCC. METHODS: Patients enrolled were aged between 18 to 75 years, had locally advanced (clinical stage IIIB, ineligible for concurrent chemoradiation or surgery) or metastatic (Stage IV) LSCC, had no previous systemic chemotherapy and at least one measurable lesion as per the Response Evaluation Criteria in Solid Tumors (version 1.1) before administration of the trial drug. The primary endpoint was progression-free survival (PFS). The secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety profiles. To explore the possible predictive value of plasma cytokines for LP treatment, plasma samples were collected from the LP group at baseline and first efficacy evaluation time and were then subjected to analysis by 45-Plex ProcartaPlex Panel 1 to detect the presence of 45 cytokines using the Luminex xMAP technology. The correlation between treatment outcomes and dynamic changes in the levels of cytokines were evaluated in preliminary analyses. RESULTS: The median duration of follow-up was 15.4 months. 237 patients in the LP group and 253 patients in the GP group were included in the per protocol set (PPS). In the PPS, the median PFS was 5.2 months versus 5.5 months in the LP and GP group (hazard ratio [HR]: 1.03, P = 0.742) respectively. The median OS was 14.6 months versus 12.5 months in the LP and GP group (HR: 0.83, P = 0.215). The ORR (41.8% versus 45.9%, P = 0.412) and DCR (90.3% versus 88.1%, P = 0.443) were also similar between the LP and GP group. A significantly lower proportion of patients in the LP group experienced adverse events (AEs) leading to treatment interruptions (10.9% versus 26.4%, P < 0.001) or treatment termination (14.3% versus 23.1%, P = 0.011). The analysis of cytokine levels in the LP group showed that low baseline levels of 27 cytokines were associated with an increased ORR, and 15 cytokines were associated with improved PFS, with 14 cytokines, including TNF-α, IFN-γ, IL-6, and IL-8, demonstrating an overlapping trend. CONCLUSION: The LP regimen demonstrated similar PFS, OS, ORR and DCR as the GP regimen for patients with locally advanced or metastatic LSCC but had more favorable toxicity profiles. The study also identified a spectrum of different cytokines that could be potentially associated with the clinical benefit in patients who received the LP regimen.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Adolescente , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/efeitos adversos , Desoxicitidina/análogos & derivados , Humanos , Lipossomos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Pessoa de Meia-Idade , Paclitaxel/efeitos adversos , Adulto Jovem , Gencitabina
3.
Clin Cancer Res ; 12(10): 3193-9, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16707620

RESUMO

PURPOSE: Quercetin is a potent chemotherapeutic drug. Clinical trials exploring different schedules of administration of quercetin have been hampered by its extreme water insolubility. To overcome this limitation, this study is aimed to develop liposomal quercetin and investigate its distribution in vivo and antitumor efficacy in vivo and in vitro. EXPERIMENTAL DESIGN: Quercetin was encapsulated in polyethylene glycol 4000 liposomes. Biodistribution of liposomal quercetin i.v. at 50 mg/kg in tumor-bearing mice was detected by high-performance liquid chromatography. Induction of apoptosis by liposomal quercetin in vitro was tested. The antitumor activity of liposomal quercetin was evaluated in the immunocompetent C57BL/6N mice bearing LL/2 Lewis lung cancer and in BALB/c mice bearing CT26 colon adenocarcinoma and H22 hepatoma. Tumor volume and survival time were observed. The mechanisms underlying the antitumor effect of quercetin in vivo was investigated by detecting the microvessel density, apoptosis, and heat shock protein 70 expression in tumor tissues. RESULTS: Liposomal quercetin could be dissolved in i.v. injection and effectively accumulate in tumor tissues. The half-time of liposomal quercetin was 2 hours in plasma. The liposomal quercetin induced apoptosis in vitro and significantly inhibited tumor growth in vivo in a dose-dependent manner. The optimal dose of liposomal quercetin resulted in a 40-day survival rate of 40%. Quantitative real-time PCR showed that liposomal quercetin down-regulated the expression of heat shock protein 70 in tumor tissues. Immunohistochemistry analysis showed that liposomal quercetin inhibited tumor angiogenesis as assessed by CD31 and induced tumor cell apoptosis. CONCLUSIONS: Our data indicated that pegylated liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be a potential application in the treatment of tumor.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Quercetina/administração & dosagem , Quercetina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Regulação para Baixo , Portadores de Fármacos , Proteínas de Choque Térmico HSP70/biossíntese , Injeções Intravenosas , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polietilenoglicóis , Quercetina/farmacocinética , Solubilidade , Distribuição Tecidual , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA