Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 897: 165443, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442473

RESUMO

Investigation on the distribution and mechanism of co-pyrolysis products is vital to the directional control and high-value utilization of agriculture solid wastes. Co-pyrolysis, devolatilization, kinetics characteristics, and evolution paths of corn stalk (CS) and low-density-polyethylene (LDPE) were investigated via thermogravimetric experiments. The co-pyrolysis behaviors could be separated into two stages: firstly, the degradation of CS (150- 400 °C); secondly, the degradation of CS (400- 550 °C). The devolatilization index (DI) increased with the addition of LDPE. Furthermore, a combination of devolatilization chemical analysis with product analysis to analyze the intrinsic mechanism during co-pyrolysis. The results indicated that the yield of alkanes and olefin in gas products increased with the addition of LDPE. Additionally, LDPE pyrolysis maybe abstract hydrogen from CS pyrolysis and evolved into hydrogen, methane, and ethylene. Further, the co-pyrolysis kinetic parameters were computed by using model-free isoconversion methods, which showed promotion of CS pyrolysis and the reduced activation energy. All the activation energy were declined, which indicated a "bidirectional positive effect" during co-pyrolysis. The mean activation energy of P-cellulose (P-CE), P-hemicellulose (P-HM), P-lignin (P-LG), and LDPE decreased by 23.49 %, 12.89 %, 15.36 %, and 27.82 %, respectively. This study further proves the hydrogen donor transfer pathway in the co-pyrolysis process of CS and LDPE, providing theoretical support for the resource utilization of agricultural solid waste.


Assuntos
Polietileno , Pirólise , Biomassa , Cinética , Celulose , Resíduos Sólidos
2.
Bioresour Technol ; 348: 126778, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104655

RESUMO

Dry-wet combined anaerobic digestion is a novel approach for treating lignocellulosic waste by increasing the organic load of reactor while accelerating the conversion of organic acids. Here, we investigated the effect of regulated substrate ratios and initial pH in the dry acidogenesis stage on the bioconversion efficiency of dry-wet combined anaerobic digestion. Our data revealed microbial interactions and further identified key microbes based on microbial co-occurrence network analysis. On day three of acidification, the kinetic hydrolysis rate and acidification yield reached 1.66 and 60.07%, respectively; this was attributed to enhancement of the synergistic effect between Clostridiales and Methanosaeta, which increased the proportion of corn straw in the substrate or lowered the initial spray slurry pH to 5.5-6.5. With increased acidification capacity, acetoclastic methanogens were enriched in the wet methanogenesis stage; the syntrophic effect of Syntrophomonadales, Syntrophobacterales and Methanospirillum, meanwhile, was enhanced, leading to an overall improvement in biogas production.


Assuntos
Biocombustíveis , Reatores Biológicos , Anaerobiose , Lignina , Metano
3.
Bioresour Technol ; 342: 125914, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34530252

RESUMO

The production of hydrochar and biocrude from hydrothermal treatment of lignocellulosic biomass is getting increasing attention, but the quality of hydrochar and biocrude need further improvement before utilization. Many attempts have been carried out on the hydrochar activation and biocrude upgrading. However, different methods play different roles on the property of hydrochar and biocrude, this topic received scant attention in recent review papers. Therefore, the influence of different activation methods on hydrochar property, and the potential application of hydrochar were summarized in this study. Meanwhile, the research progress on biocrude upgrading is reported. Besides, the techno-economic analysis of hydrochar and biocrude from hydrothermal treatment of lignocellulosic biomass are also discussed. Finally, the research needs and future directions on hydrochar activation and biocrude upgrading were proposed. This paper could provide insights for further studies on the utilization of hydrochar and biocrude.


Assuntos
Carbono , Biomassa , Lignina , Temperatura
4.
Bioresour Technol ; 333: 125204, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33932811

RESUMO

In this study, Anaerobic Digestion Model No. 1 (ADM1) were modified to simulate anaerobic digestion (AD) process of microcrystalline cellulose (MCC) and five lignocellulosic substrates, with the goal of predicting the hydrolysis rates of holocellulose fractions in environments with and without lignin inhibition. After model verification, the hydrolysis rate constant of MCC, i.e., the hydrolyzability of cellulose without lignin inhibition, was 3.227 d-1, while those of the holocellulose fractions of five lignocellulosic substrates (I_khyd) were in the range of 1.270 d-1 to 3.364 d-1 (average of 2.242 d-1), which demonstrated remarkable suppression of holocellulose hydrolysis by lignin. Lignin inhibition index (LII) was proposed as an indicator to intuitively quantify and characterize the lignin inhibitory strength in a specific substrate. A series of factors with the potential to affect the LII were analyzed sequentially. This study provides an advanced understanding of the participation and behavior of lignin in the AD process.


Assuntos
Lignina , Anaerobiose , Hidrólise , Lignina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA