Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151170

RESUMO

Electric field stimulation is known to affect various cellular processes, including cell fate specification and differentiation, particularly towards neuronal lineages. This makes it a promising therapeutic strategy to stimulate regeneration of neuronal tissues. Retinal ganglion cells (RGCs) is a type of neural cells of the retina responsible for transduction of visual signals from the retina to the brain cortex, and is often degenerated in various blindness-causing retinal diseases. The organic photovoltaic materials such as poly-3-hexylthiophene (P3HT) can generate electric current upon illumination with light of the visible spectrum, and possesses several advantageous properties, including light weight, flexibility and high biocompatibility, which makes them a highly promising tool for electric stimulation of cells in vitro and in vivo. In this study, we tested the ability to generate photocurrent by several formulations of blend (bulk heterojunction) of P3HT (which is electron donor material) with several electron acceptor materials, including Alq3 and bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2). We found that the photovoltaic device based on bulk heterojunction of P3HT with Bebq2 could generate photocurrent when illuminated by both green laser and visible spectrum light. We tested the growth and differentiation capacity of human induced pluripotent stem cells (hiPSC)-derived RGCs when grown in interface with such photostimulated device, and found that they were significantly increased. The application of P3HT:Bebq2-formulation of photovoltaic device has a great potential for developments in retinal transplantation, nerve repair and tissue engineering approaches of treatment of retinal degeneration.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Compostos Organosselênicos , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Imunofluorescência , Humanos , Compostos Organosselênicos/química , Polímeros , Esferoides Celulares
2.
Int J Mol Sci ; 20(2)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634448

RESUMO

Age-related macular degeneration (AMD) is the eye disease with the highest epidemic incidence, and has great impact on the aged population. Wet-type AMD commonly has the feature of neovascularization, which destroys the normal retinal structure and visual function. So far, effective therapy options for rescuing visual function in advanced AMD patients are highly limited, especially in wet-type AMD, in which the retinal pigmented epithelium and Bruch's membrane structure (RPE-BM) are destroyed by abnormal angiogenesis. Anti-VEGF treatment is an effective remedy for the latter type of AMD; however, it is not a curative therapy. Therefore, reconstruction of the complex structure of RPE-BM and controlled release of angiogenesis inhibitors are strongly required for sustained therapy. The major purpose of this study was to develop a dual function biomimetic material, which could mimic the RPE-BM structure and ensure slow release of angiogenesis inhibitor as a novel therapeutic strategy for wet AMD. We herein utilized plasma-modified polydimethylsiloxane (PDMS) sheet to create a biomimetic scaffold mimicking subretinal BM. This dual-surface biomimetic scaffold was coated with laminin and dexamethasone-loaded liposomes. The top surface of PDMS was covalently grafted with laminin and used for cultivation of the retinal pigment epithelial cells differentiated from human induced pluripotent stem cells (hiPSC-RPE). To reach the objective of inhibiting angiogenesis required for treatment of wet AMD, the bottom surface of modified PDMS membrane was further loaded with dexamethasone-containing liposomes via biotin-streptavidin linkage. We demonstrated that hiPSC-RPE cells could proliferate, express normal RPE-specific genes and maintain their phenotype on laminin-coated PDMS membrane, including phagocytosis ability, and secretion of anti-angiogenesis factor PEDF. By using in vitro HUVEC angiogenesis assay, we showed that application of our membrane could suppress oxidative stress-induced angiogenesis, which was manifested in decreased secretion of VEGF by RPE cells and suppression of vascularization. In conclusion, we propose modified biomimetic material for dual delivery of RPE cells and liposome-enveloped dexamethasone, which can be potentially applied for AMD therapy.


Assuntos
Dexametasona/administração & dosagem , Dimetilpolisiloxanos , Células Epiteliais/metabolismo , Lipossomos , Neovascularização Fisiológica/efeitos dos fármacos , Nylons , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Biotina/química , Biotina/metabolismo , Proliferação de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/química , Laminina/metabolismo , Lipossomos/química , Degeneração Macular/terapia , Nylons/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA