Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 257: 127263, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32512337

RESUMO

Pre-concentration of wastewater using a forward osmosis (FO) membrane prior to processing by an anaerobic digester can enhance biogas production. However, biofouling caused by microbes in wastewater remains a challenge. The study aimed to evaluate the efficacy of chloramination in mitigating the biofouling of an FO membrane during a single-pass concentration of primary wastewater effluent. Pre-disinfection at a chloramine dose of 22-121 mg/L successfully alleviated membrane fouling. Bacterial cell counts in the feed and concentrate showed that most of the bacterial cells in the wastewater were trapped on the membrane surface or spacer. The FO membrane surfaces in non-chloraminated/chloraminated systems were fully-covered by intact/damaged bacterial cells, respectively, indicating that chloramination effectively mitigated biofouling. However, due to high permeate-recovery and low cross-flow velocity in a single-pass concentration process, organic fouling on the membrane surface (and possibly on the interior wall of the membrane-pores) appeared to cause a gradual reduction in permeate-flux. This study demonstrated successful biofouling control using chloramination during a single-pass and high-recovery pre-concentration of primary wastewater effluent.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Incrustação Biológica , Cloraminas , Membranas Artificiais , Osmose , Águas Residuárias , Purificação da Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-30261685

RESUMO

Pre-concentration is essential for energy and resource recovery from municipal wastewater. The potential of forward osmosis (FO) membranes to pre-concentrate wastewater for subsequent biogas production has been demonstrated, although biofouling has also emerged as a prominent challenge. This study, using a cellulose triacetate FO membrane, shows that chloramination of wastewater in the feed solution at 3⁻8 mg/L residual monochloramine significantly reduces membrane biofouling. During a 96-h pre-concentration, flux in the chloraminated FO system decreased by only 6% and this flux decline is mostly attributed to the increase in salinity (or osmotic pressure) of the feed due to pre-concentration. In contrast, flux in the non-chloraminated FO system dropped by 35% under the same experimental conditions. When the feed was chloraminated, the number of bacterial particles deposited on the membrane surface was significantly lower compared to a non-chloraminated wastewater feed. This study demonstrated, for the first time, the potential of chloramination to inhibit bacteria growth and consequently biofouling during pre-concentration of wastewater using a FO membrane.


Assuntos
Incrustação Biológica/prevenção & controle , Cloraminas/química , Filtração/métodos , Osmose , Águas Residuárias/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Japão , Membranas Artificiais
3.
Bioresour Technol ; 234: 253-263, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28324827

RESUMO

The aim of this study was the evaluation of anaerobic treatment for the soluble organics generated from a steam-explosion pre-treatment of sugarcane bagasse. The batch analysis revealed that about 50% of the organics was possible to be degraded into methane whilst the rest was biologically inert and composed of mostly lignin. Based on the experiment a kinetic model composed of 14 kinds of soluble substances and 5 kinds of anaerobic microorganisms was developed. The model was used to simulate the process performance of a continuous anaerobic bioreactor with MLSS concentration at 2500-15,000mg/L. The simulation indicated that the bioreactor could receive the influent until 0.4kg-COD/kg-MLSS/d of loading without significant deterioration of methane conversion. By addition of powdered activated carbon, the rest of unbiodegradable soluble organics and dark brown colour in the effluent were removed to 840mg-C/L and 760 unit respectively at adsorption of 190mg-C/g-PAC and 1200unit/g-PAC.


Assuntos
Reatores Biológicos , Saccharum , Anaerobiose , Cinética , Lignina , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA