Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Sci ; 33(7): 793-799, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690256

RESUMO

A sensitive capsaicin sensor was constructed based on a poly(sodium 4-styrenesulfonate) functionalized graphite modified screen printed electrode (PSS-Grp/SPE) in this study. The PSS-Grp and poly(diallyldimethylammonium chloride) functionalized graphite (PDDA-Grp) were easily synthesized by interacting Grp with PSS and PDDA through sonication, and resulted in negative and with positive charges on the surface, respectively. The prepared PSS-Grp and PDDA-Grp were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet and visible spectroscopy (UV-vis). The electrochemical performance of PSS-Grp in a 50 µM capsaicin solution presented a current density of 33 µA cm-2, which was much higher than the PDDA-Grp of 1.5 µA cm-2. Our study showed that capsaicin could interact better with strong negative charges on the PSS-Grp/SPE surface to give a higher electrochemical response. The direct electrochemical sensing of capsaicin was achieved at PSS-Grp/SPE using differential pulse stripping voltammetry (DPSV) under the optimized conditions.


Assuntos
Capsaicina/análise , Técnicas Eletroquímicas , Grafite/química , Polímeros/química , Ácidos Sulfônicos/química , Eletrodos , Tamanho da Partícula , Propriedades de Superfície
2.
Anal Chim Acta ; 594(2): 175-83, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17586112

RESUMO

Electrodeposition of Pt-Pb nanoparticles (PtPbNPs) to multi-walled carbon nanotubes (MWCNTs) resulted in a stable PtPbNP/MWCNT nanocomposite with high electrocatalytic activity to glucose oxidation in either neutral or alkaline medium. More importantly, the nanocomposite electrode with a slight modification exhibited high sensitivity, high selectivity, and low detection limit in amperometric glucose sensing at physiological neutral pH (poised at a negative potential). At +0.30 V in neutral solution, the nanocomposite electrode exhibited linearity up to 11 mM of glucose with a sensitivity of 17.8 microA cm(-2) mM(-1) and a detection limit of 1.8 microM (S/N=3). Electroactive ascorbic acid (0.1 mM), uric acid (0.1 mM) and fructose (0.3 mM) invoked only 23%, 14% and 9%, respectively, of the current response obtained for 3 mM glucose. At -0.15 V in neutral solution, the electrode responded linearly to glucose up to 5 mM with a detection limit of 0.16 mM (S/N=3) and detection sensitivity of approximately 18 microA cm(-2) mM(-1). At this negative potential, ascorbic acid, uric acid, and fructose were not electroactive, therefore, not interfering with glucose sensing. Modification of the nanocomposite electrode with Nafion coating followed by electrodeposition of a second layer of PtPbNPs on the Nafion coated PtPbNP/MWCNT nanocomposite produced a glucose sensor (poised at -0.15 V) with a lower detection limit (7.0 microM at S/N=3) and comparable sensitivity, selectivity and linearity compared to the PtPbNP/MWCNT nanocomposite. The Nafion coating lowered the detection limit by reducing the background noise, while the second layer of PtPbNPs restored the sensitivity to the level before Nafion coating.


Assuntos
Glucose/análise , Chumbo/química , Nanocompostos/química , Platina/química , Ligas , Eletroquímica , Eletrodos , Glucose/química , Concentração de Íons de Hidrogênio , Nanocompostos/ultraestrutura , Nanopartículas/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Oxirredução , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA