Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomaterials ; 301: 122234, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421671

RESUMO

Understanding the biocompatibility of biomaterials is a prerequisite for the prediction of its clinical application, and the present assessments mainly rely on in vitro cell culture and in situ histopathology. However, remote organs responses after biomaterials implantation is unclear. Here, by leveraging body-wide-transcriptomics data, we performed in-depth systems analysis of biomaterials - remote organs crosstalk after abdominal implantation of polypropylene and silk fibroin using a rodent model, demonstrating local implantation caused remote organs responses dominated by acute-phase responses, immune system responses and lipid metabolism disorders. Of note, liver function was specially disturbed, defined as hepatic lipid deposition. Combining flow cytometry analyses and liver monocyte recruitment inhibition experiments, we proved that blood derived monocyte-derived macrophages in the liver underlying the mechanism of abnormal lipid deposition induced by local biomaterials implantation. Moreover, from the perspective of temporality, the remote organs responses and liver lipid deposition of silk fibroin group faded away with biomaterial degradation and restored to normal at end, which highlighted its superiority of degradability. These findings were further indirectly evidenced by human blood biochemical ALT and AST examination from 141 clinical cases of hernia repair using silk fibroin mesh and polypropylene mesh. In conclusion, this study provided new insights on the crosstalk between local biomaterial implants and remote organs, which is of help for future selecting and evaluating biomaterial implants with the consideration of whole-body response.


Assuntos
Materiais Biocompatíveis , Fibroínas , Humanos , Polipropilenos , Macrófagos/metabolismo , Fígado/metabolismo , Lipídeos , Seda
2.
Biomaterials ; 277: 121116, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478932

RESUMO

Macrophages play crucial roles in host tissue reaction to biomaterials upon implantation in vivo. However, the complexity of biomaterial degradation-related macrophage subpopulations that accumulate around the implanted biomaterials in situ is not fully understood. Here, using single cell RNA-seq, we analyze the transcriptome profiles of the various cell types around the scaffold to map the scaffold-induced reaction, in an unbiased approach. This enables mapping of all biomaterial degradation-associated cells at high resolution, revealing distinct subpopulations of tissue-resident macrophages as the major cellular sources of biomaterial degradation in situ. We also find that scaffold architecture can affect the mechanotransduction and catabolic activity of specific material degradation-related macrophage subpopulations in an Itgav-Mapk1-Stat3 dependent manner, eventually leading to differences in scaffold degradation rate in vivo. Our work dissects unanticipated aspects of the cellular and molecular basis of biomaterial degradation at the single-cell level, and provides a conceptual framework for developing functional tissue engineering scaffolds in future.


Assuntos
Materiais Biocompatíveis , Mecanotransdução Celular , Macrófagos , RNA-Seq , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA