Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Sci Technol ; 56(2): 1405-1412, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34941244

RESUMO

Membrane distillation (MD) has potential to become a competitive technology for managing hypersaline brine but not until the critical challenge of mineral scaling is addressed. The state-of-the-art approach for mitigating mineral scaling in MD involves the use of superhydrophobic membranes that are difficult to fabricate and are commercially unavailable. This study explores a novel operational strategy, namely, negative pressure direct contact membrane distillation (NP-DCMD) that can minimize mineral scaling with commercially available hydrophobic membranes and at the same time enhance the water vapor flux substantially. By applying a negative gauge pressure on the feed stream, NP-DCMD achieved prolonged resistance to CaSO4 scaling and a dramatic vapor flux enhancement up to 62%. The exceptional scaling resistance is attributable to the formation of a concave liquid-gas under a negative pressure that changes the position of the water-air interface to hinder interfacial nucleation and crystal growth. The substantial flux enhancement is caused by the reduced molecular diffusion resistance within the pores and the enhanced heat transfer kinetics across the boundary layer in NP-DCMD. Achieving substantial performance improvement in both the scaling resistance and vapor flux with commercial membranes, NP-DCMD is a significant innovation with vast potential for practical adoption due to its simplicity and effectiveness.


Assuntos
Destilação , Purificação da Água , Sulfato de Cálcio , Difusão , Membranas Artificiais
2.
Biomacromolecules ; 14(5): 1278-86, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23495918

RESUMO

Creating patterns of biomolecules and cells has been applied widely in many fields associated with the life sciences, including diagnostics. In these applications it has become increasingly apparent that the spatiotemporal arrangement of biological molecules in vitro is important for the investigation of the cellular functions found in vivo. However, the cell patterning techniques often used are limited to creating 2D functional surfaces on glass and silicon. In addition, in general, these procedures are not easy to implement in conventional biological laboratories. Here, we show the formation of a living poly(ethylene glycol) (PEG) layer that can be patterned with visible light on plastic surfaces. This new and simple method can be expanded to pattern multiple types of biomolecule on either a previously formed PEG layer or a plastic substrate. Using common plastic wares (i.e., polyethylene films and polystyrene cell culture Petri-dishes), we demonstrate that these PEG-modified surfaces have a high resistance to protein adsorption and cell adhesion, while at the same time, being capable of undergoing further molecular grafting with bioactive motifs. With a photomask and a fluid delivery system, we illustrate a flexible way to immobilize biological functions with a high degree of 2D and 3D spatial control. We anticipate that our method can be easily implemented in a typical life science laboratory (without the need for specialized lithography equipment) offering the prospect of imparting desirable properties to plastic products, for example, the creation of functional microenvironments in biological studies or reducing biological adhesion to surfaces.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Polietilenoglicóis/química , Polietileno/química , Poliestirenos/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Luz , Plásticos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
3.
Water Res ; 244: 120513, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651864

RESUMO

Membrane distillation (MD) technology has gained a lot of attention for treatment of geothermal brine, high salinity waste streams. However, mineral scaling remains a major challenge when treating complex high-salt brines. The development of surface-patterned superhydrophobic membranes is one of the core strategies to solve this problem. We prepared flat sheet membranes (F-PVDF) and hydrophobic membranes with micron-scale corrugated pattern (C-PVDF) using a phase separation method. Their scaling behavior was systematically evaluated using calcium sulfate solutions and the impact of the feed flow was innovatively investigated. Although C-PVDF shows higher contact angle and lower sliding angle than F-PVDF, the scaling resistance of C-PVDF in the perpendicular flow direction has worst scaling resistance. Although the nucleation barrier of the corrugated membrane is the same at both parallel and perpendicular flow directions based on the traditional thermodynamic nucleation theory, experimental observations show that the C-PVDF has the best scaling resistance in the parallel flow direction. A 3D computational fluid dynamics (CFD) model was used and the hydrodynamic state of the pattern membranes was assessed as a determinant of the scaling resistance. The corrugated membrane with parallel flow mode (flow direction in parallel to the corrugation ridge) induces higher fluid velocity within the channel, which mitigated the deposition of crystals. While in the perpendicular flow mode (flow direction in perpendicular to the corrugation ridge), the solutions confined in the corrugated grooves due to vortex shielding, which aggravates the scaling. These results shed light on the mechanism of scaling resistance of corrugated membranes from a hydrodynamic perspective and reveal the mechanism of anisotropy exhibited by corrugated membranes in MD.


Assuntos
Membranas Artificiais , Purificação da Água , Sulfato de Cálcio , Destilação , Anisotropia , Purificação da Água/métodos , Interações Hidrofóbicas e Hidrofílicas
4.
Carbohydr Polym ; 302: 120403, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604075

RESUMO

Conductive hydrogel (CH) as flexible electrophysiology interface has become the new trend of bioelectronics, but still challenging in synergizing the biocompatibility, mechanics and comprehensive electrical performance. Hyaluronic acid (HA), featured with abundant active sites for personalized-modification and well-known biocompatibility, is one of the alterative candidates. The obstacle lies in the unstable conductivity from the ionic conduction, and the electronic conduction by embedding conductive nanoparticles (NPs) is likely to result in inhomogeneous CH with poor stretchability and discontinuous conductive network. Herein, inspired by catechol chemistry, dopamine (DA)-modified HA was homogeneously composited with DA-modified poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, named PP), to produce particle-free conductive hydrogel (HA-DA-PP). The DA-introduced multiple bondings in HA network and PP molecules brought aqueous conductive PP into HA hydrogel to form a homogeneous crosslinking network, imparted the flexible stretchability. By accurately regulation, HA-DA-PP achieved high stretchability with large tensile deformation (over 470 %) in the category of natural polymer-based hydrogels. Moreover, the interaction between DA and PP (conformational transition and charge transfer) could effectively enhance the hydrogel's conductivity. Consequently, HA-DA-PP hydrogel showed high sensibility to human movement, epidermal and in vivo electrophysiological signals monitoring. Overall, DA-mediated multiple bonding is a powerful strategy for constructing CH with high performance for bioelectronics.


Assuntos
Ácido Hialurônico , Hidrogéis , Humanos , Hidrogéis/química , Ácido Hialurônico/química , Dopamina , Polímeros/química , Conformação Molecular , Condutividade Elétrica
5.
ACS Appl Bio Mater ; 6(9): 3414-3422, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071831

RESUMO

The learning and memory functions of the brain remain unclear, which are in urgent need for the detection of both a single cell signal with high spatiotemporal resolution and network activities with high throughput. Here, an in vitro microelectrode array (MEA) was fabricated and further modified with polypyrrole/carboxylated single-walled carbon nanotubes (PPy/SWCNTs) nanocomposites as the interface between biological and electronic systems. The deposition of the nanocomposites significantly improved the performance of microelectrodes including low impedance (60.3 ± 28.8 k Ω), small phase delay (-32.8 ± 4.4°), and good biocompatibility. Then the modified MEA was used to apply learning training and test on hippocampal neuronal network cultured for 21 days through electrical stimulation, and multichannel electrophysiological signals were recorded simultaneously. During the process of learning training, the stimulus/response ratio of the hippocampal learning population gradually increased and the response time gradually decreased. After training, the mean spikes in burst, number of bursts, and mean burst duration increased by 53%, 191%, and 52%, respectively, and the correlation of neurons in the network was significantly enhanced from 0.45 ± 0.002 to 0.78 ± 0.002. In addition, the neuronal network basically retained these characteristics for at least 5 h. These results indicated that we have successfully constructed a learning and memory model of hippocampal neurons on the in vitro MEA, contributing to understanding learning and memory based on synaptic plasticity. The proposed PPy/SWCNTs-modified in vitro MEA will provide a promising platform for the exploration of learning and memory mechanism and their applications in vitro.


Assuntos
Nanotubos de Carbono , Polímeros , Microeletrodos , Pirróis , Neurônios , Estimulação Elétrica , Hipocampo/fisiologia
6.
ACS Sens ; 6(9): 3377-3386, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34410704

RESUMO

Accurate detection of the degree of isoflurane anesthesia during a surgery is important to avoid the risk of overdose isoflurane anesthesia timely. To address this challenge, a four-shank implantable microelectrode array (MEA) was fabricated for the synchronous real-time detection of dual-mode signals [electrophysiological signal and dopamine (DA) concentration] in rat striatum. The SWCNTs/PEDOT:PSS nanocomposites were modified onto the MEAs, which significantly improved the electrical and electrochemical performances of the MEAs. The electrical performance of the modified MEAs with a low impedance (16.20 ± 1.68 kΩ) and a small phase delay (-27.76 ± 0.82°) enabled the MEAs to detect spike firing with a high signal-to-noise ratio (> 3). The electrochemical performance of the modified MEAs with a low oxidation potential (160 mV), a low detection limit (10 nM), high sensitivity (217 pA/µM), and a wide linear range (10 nM-72 µM) met the specific requirements for DA detection in vivo. The anesthetic effect of isoflurane was mediated by inhibiting the spike firing of D2_SPNs (spiny projection neurons expressing the D2-type DA receptor) and the broadband oscillation rhythm of the local field potential (LFP). Therefore, the spike firing rate of D2_SPNs and the power of LFP could reflect the degree of isoflurane anesthesia together. During the isoflurane anesthesia-induced death procedure, we found that electrophysiological activities and DA release were strongly inhibited, and changes in the DA concentration provided more details regarding this procedure. The dual-mode recording MEA provided a detection method for the degree of isoflurane anesthesia and a prediction method for fatal overdose isoflurane anesthesia.


Assuntos
Anestesia , Isoflurano , Animais , Compostos Bicíclicos Heterocíclicos com Pontes , Dopamina , Microeletrodos , Polímeros , Ratos
7.
Anal Chem ; 81(1): 473-8, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19117468

RESUMO

Biomineralization is the process where biological systems produce well-defined composite structures such as shell, teeth, and bones. Currently, there is substantial momentum to investigate the processes implicated in biomineralization and to unravel the complex roles of proteins in the control of polymorph switching. An understanding of these processes may have wide-ranging significance in health care applications and in the development of advanced materials. We have demonstrated a microfluidic approach toward these challenges. A reversibly sealed T-junction microfluidic device was fabricated to investigate the influence of extrapallial (EP) fluid proteins in polymorph control of crystal formation in mollusk shells. A range of conditions were investigated on chip, allowing fast screening of various combinations of ion, pH, and protein concentrations. The dynamic formation of crystals was monitored on chip and combined with in situ Raman to reveal the polymorph in real time. To this end, we have demonstrated the unique advantages of this integrated approach in understanding the processes involved in biomineralization and revealing information that is impossible to obtain using traditional methods.


Assuntos
Calcificação Fisiológica/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Mytilus edulis/metabolismo , Animais , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Cloreto de Cálcio/química , Carbonatos/química , Concentração de Íons de Hidrogênio , Cinética , Técnicas Analíticas Microfluídicas/instrumentação , Mytilus edulis/química , Análise Espectral Raman/métodos
8.
Water Res ; 155: 152-161, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844676

RESUMO

Scaling in membrane distillation (MD) is a key issue in desalination of concentrated saline water, where the interface property between the membrane and the feed become critical. In this paper, a slippery mechanism was explored as an innovative concept to understand the scaling behavior in membrane distillation for a soluble salt, NaCl. The investigation was based on a novel design of a superhydrophobic polyvinylidene fluoride (PVDF) membrane with micro-pillar arrays (MP-PVDF) using a micromolding phase separation (µPS) method. The membrane showed a contact angle of 166.0 ±â€¯2.3° and the sliding angle of 15.8 ±â€¯3.3°. After CF4 plasma treatment, the resultant membrane (CF4-MP-PVDF) showed a reduced sliding angle of 3.0°. In direct contact membrane distillation (DCMD), the CF4-MP-PVDF membrane illustrated excellent anti-scaling in concentrating saturated NaCl feed. Characterization of the used membranes showed that aggregation of NaCl crystals occurred on the control PVDF and MP-PVDF membranes, but not on the CF4-MP-PVDF membrane. To understand this phenomenon, a "slippery" theory was introduced and correlated the sliding angle to the slippery surface of CF4-MP-PVDF and its anti-scaling property. This work proposed a well-defined physical and theoretical platform for investigating scaling problems in membrane distillation and beyond.


Assuntos
Destilação , Purificação da Água , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Porosidade
9.
Sci Rep ; 4: 4982, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24845078

RESUMO

Polymer brushes and hydrogels are sensitive to the environment, which can cause uncontrolled variations on their performance. Herein, for the first time, we report a non-swelling "PEG molecular net-cloth" on a solid surface, fabricated using a novel "visible light induced surface controlled graft cross-linking polymerization" (VSCGCP) technique. Via this method, we show that 1) the 3D-network structure of the net-cloth can be precisely modulated and its thickness controlled; 2) the PEG net-cloth has excellent resistance to non-specific protein adsorption and cell adhesion; 3) the mild polymerization conditions (i.e. visible light and room temperature) provided an ideal tool for in situ encapsulation of delicate biomolecules such as enzymes; 4) the successive grafting of reactive three-dimensional patterns on the PEG net-cloth enables the creation of protein microarrays with high signal to noise ratio. Importantly, this strategy is applicable to any C-H containing surface, and can be easily tailored for a broad range of applications.


Assuntos
Enzimas Imobilizadas/química , Glucose/análogos & derivados , Peroxidase do Rábano Silvestre/química , Hidrogéis/química , Polietilenoglicóis/química , Polímeros/química , Adsorção , Adesão Celular , Enzimas Imobilizadas/metabolismo , Glucose/química , Glucose/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Hidrogéis/metabolismo , Polietilenoglicóis/metabolismo , Polimerização , Polímeros/metabolismo , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA