Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(44): 16079-16088, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37883745

RESUMO

The increasing pressure and unhealthy lifestyle are gradually eroding the physical and mental health of modern people. As a key hormone responsible for maintaining the normal functioning of human systems, cortisol plays a vital role in regulating physiological activities. Moreover, cortisol can serve as a marker for monitoring psychological stress. The development of cortisol detection sensors carries immense potential, as they not only facilitate timely adjustments and treatments by detecting abnormal physiological indicators but also provide comprehensive data for conducting research on the correlation between cortisol and several potential diseases. Here, we report a molecularly imprinted polymer (MIP) electrochemical biosensor that utilizes a porous composite (MXG) modified electrode. MXG composite is prepared by combining Ti3C2Tx-MXene sheets and graphene (Gr). MXG composite material with high conductive properties and large electroactive surface area promotes the charge transfer capability of the electrode surface, expands the effective surface area of the sensor, and increases the content of cortisol-imprinted cavities on the electrode, thereby improving the sensing ability of the sensor. By optimizing the preparation process, the prepared sensor has an ultralow lower limit of detection of 0.4 fM, a wide detection range of 1 fM-10 µM, and good specificity for steroid hormones and interfering substances with similar cortisol structure. The ability of the sensor to detect cortisol in saliva was also confirmed experimentally. This highly sensitive and selective cortisol sensor is expected to be widely used in the fields of physiological and psychological care.


Assuntos
Grafite , Impressão Molecular , Humanos , Polímeros/química , Hidrocortisona , Grafite/química , Técnicas Eletroquímicas , Limite de Detecção , Titânio , Eletrodos
2.
J Nanosci Nanotechnol ; 7(8): 2709-18, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17685287

RESUMO

A novel rigid linear polymer poly(phenyleneethynylene) (PPE) was synthesized and the polymer exhibits good solubility in both water and common organic solvents. The interaction at both ground and excited state between this polymer and single-walled carbon nanotubes (SWNTs) was studied and a water-soluble nano-scale PPE/SWNTs hybrid was fabricated, where the water solubility of SWNTs was enhanced to 1.8 mg/ml. Steady state fluorescence spectra and fluorescence lifetime decay measurements showed that the emissions from PPEs in this hybrid at excited state were efficiently quenched by the attachment of SWNTs, where an efficient energy transfer happened from PPEs to SWNTs as the electron acceptor. Using this hybrid as the active layer we fabricated a photovoltaic cell with the bulk heterojunction configuration, and it showed a photoresponse with an open circuit voltage (Voc) of 105 mV and a short circuit current density (Isc) of 28.7 microA/cm2 under standard AM 1.5 illumination (100 mW/cm2).


Assuntos
Alcinos/química , Éteres/química , Nanotubos de Carbono/química , Eletroquímica/métodos , Espectroscopia de Ressonância Magnética , Teste de Materiais , Nanopartículas/química , Nanotecnologia/métodos , Fotoquímica/métodos , Polímeros/química , Solubilidade , Solventes/química , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA