Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 269: 116111, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33290953

RESUMO

Polymer flooding is one of the most important enhanced oil recovery techniques. However, a large amount of hydrolyzed polyacrylamide (HPAM)-containing wastewater is produced in the process of polymer flooding, and this poses a potential threat to the environment. In this study, the treatment of HPAM-containing wastewater was analyzed in an ozonic-anaerobic-aerobic multistage treatment process involving an ozone reactor (OR), an upflow anaerobic sludge blanket reactor (UASBR), and an aerobic biofilm reactor (ABR). At an HPAM concentration of 500 mg L-1 and an ozone dose of 25 g O3/g TOC, the HPAM removal rate reached 85.06%. With fracturing of the carbon chain, high-molecular-weight HPAM was degraded into low-molecular-weight compounds. Microbial communities in bioreactors were investigated via high-throughput sequencing, which revealed that norank_c_Bacteroidetes_vadinHA17, norank_f_Cytophagaceae, and Meiothermus were the dominant bacterial groups, and that Methanobacterium, norank_c_WCHA1-57, and Methanosaeta were the key archaeal genera. To the best of our knowledge, this is the first study in which HPAM-containing wastewater is treated using an ozonic-anaerobic-aerobic multistage treatment system. The ideal degradation performance and the presence of keystone microorganisms confirmed that the multistage treatment process is feasible for treatment of HPAM-containing wastewater.


Assuntos
Ozônio , Purificação da Água , Resinas Acrílicas , Anaerobiose , Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
2.
Bioresour Technol ; 287: 121404, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31108414

RESUMO

This work aimed to study biohydrogen (H2) and polyhydroxyalkanoate (PHA) production from original hydrolyzed polyacrylamide (HPAM)-containing wastewater. NH4+-N from HPAM hydrolysis was removed efficiently through short-cut nitrification and anoxic ammonia oxidation (anammox). Carbon/Nitrogen (C/N) ratios of effluent reached 51-97, and TOC decreased only 2%-4%, providing potential for subsequent H2 and PHA production. The maximum yields of H2 (0.833 mL·mg-1substrate) and Volatile Fatty Acid (VFA) (465 mg·L-1) occurred at influent C/N ratio of 51. Substrate removal increased linearly with the activities of dehydrogenase and hydrogenase (R2 ≥ 0.990), and H2 yield rose exponentially with enzyme activities (R2 ≥ 0.989). The maximum PHA yield (54.2% VSS) occurred at the 42nd hour and influent C/N ratio of 97. PHA yield was positively correlated with substrate uptake. The change of H2-producing, PHA-accumulating and HPAM-degradating bacteria indicated that those functional microorganisms had synergistic effects on H2 production and substrate uptake, as well as PHA accumulation and substrate uptake.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Resinas Acrílicas , Reatores Biológicos , Nitrificação
3.
Bioresour Technol ; 291: 121811, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31344634

RESUMO

Degradation of hydrolyzed polyacrylamide-containing (HPAM-containing) wastewater was investigated in a lab-scale aerobic-ozonic-aerobic hybrid treatment system. When the HPAM concentration was 500 mg L-1 and the ozone dose was 25 g O3/g TOC, the HPAM removal rate reached 90.79%. Experimental results obtained from gel permeation chromatography (GPC) and rheometer indicated that the refractory HPAM was decomposed into small-molecule compounds. High performance liquid chromatography (HPLC) analysis showed that there was no acrylamide (AM) in the effluent of the system. Microbial communities in two aerobic biofilm reactors (ABRs) were analyzed by Illumina MiSeq Sequencing, which indicated that norank_f_Cytophagaceae, Meiothermus, Bacillus, etc. were keystone functional bacterial genera and Methanobacterium, norank_p_Bathyarchaeota, norank_c_Marine_Group_Ⅰ, etc. were dominant functional archaeal groups. To our knowledge, this is the first study to treat HPAM-containing wastewater using an aerobic-ozonic-aerobic hybrid process. Good removal efficiencies and presence of functional microorganisms demonstrated that the hybrid treatment system was practical for treating HPAM-containing wastewater.


Assuntos
Ozônio , Purificação da Água , Resinas Acrílicas , Biodegradação Ambiental , Biofilmes , Reatores Biológicos , Águas Residuárias , Água
4.
Bioresour Technol ; 293: 122023, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31472407

RESUMO

The differences of crude oil recovery ratio resulted in different levels of crude oil in actual hydrolyzed polyacrylamide (HPAM)-containing wastewater. The effect of crude oil on HPAM biotransformation was explored from bioresource production, enzymatic activity and microbial function. In aerobic biosystems, the highest polyhydroxyalkanoate (PHA) yield (19.6%-40.2%) and dehydrogenase (DH) activity (4.06-8.32 mg·g-1 VSS) occurred in the 48th hour, and increased with crude oil concentration (0-400 mg·L-1). In anoxic biosystems, the highest PHA yield (24.5%-50.5%) and DH activity (3.24-6.69 mg·g-1 VSS) occurred in the 72nd hour, and increased with crude oil concentration. The higher substrate removal (38.5%-65.7%) occurred in aerobic biosystems, while the higher PHA accumulation occurred in anoxic biosystems. PHA yield, DH activity and HPAM removal were related. Microbial function related to HPAM biodegradation and PHA synthesis was discussed. The main function of Pseudomonas and Bacillus in aerobic biosystems was to degrade HPAM, and in anoxic biosystems was to synthesize PHA.


Assuntos
Petróleo , Resinas Acrílicas , Biotransformação , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA