RESUMO
BACKGROUND: A biotooth is defined as a complete living tooth, made in laboratory cultures from a spontaneous interplay between epithelial and mesenchymal cell-based frontal systems. A good solution to these problems is to use induced pluripotent stem cells (iPSCs). However, no one has yet formulated culture conditions that effectively differentiate iPSCs into dental epithelial and dental mesenchymal cells phenotypes analogous to those present in tooth development. RESULTS: Here, we tried to induce differentiation methods for dental epithelial cells (DEC) and dental mesenchymal cells from iPSCs. For the DEC differentiation, the conditional media of SF2 DEC was adjusted to embryoid body. Moreover, we now report on a new cultivation protocol, supported by transwell membrane cell culture that make it possible to differentiate iPSCs into dental epithelial and mesenchymal cells with abilities to initiate the first stages in de novo tooth formation. CONCLUSIONS: Implementation of technical modifications to the protocol that maximize the number and rate of iPSC differentiation, into mesenchymal and epithelial cell layers, will be the next step toward growing an anatomically accurate biomimetic tooth organ. Developmental Dynamics 248:129-139, 2019. © 2018 Wiley Periodicals, Inc.
Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Dente/citologia , Animais , Biomimética/métodos , Biomimética/tendências , Diferenciação Celular , Células Epiteliais/fisiologia , Humanos , Mesoderma/citologia , Mesoderma/fisiologia , Dente/crescimento & desenvolvimentoRESUMO
Coral skeletons can regenerate replacement human bone in nonload-bearing excavated skeletal locations. A combination of multiscale, interconnected pores and channels and highly bioactive surface chemistry has established corals as an important alternative to using healthy host bone replacements. Here, we highlight how coral skeletal systems are being remolded into new calcified structures or synthetic corals by biomimetic processes, as places for the organized permeation of bone tissue cells and blood vessels. Progressive technologies in coral aquaculture and self-organization inorganic chemistry are helping to modify natural corals and create synthetic coral architectures able to accelerate bone regeneration with proper host integration at more skeletal locations, adapted to recent surgical techniques and used to treat intrinsic skeletal deformities and metabolic conditions.