Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomater Adv ; 135: 212725, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35929205

RESUMO

The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.


Assuntos
Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Lipossomos/uso terapêutico , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico
2.
Carbohydr Polym ; 241: 116386, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32507188

RESUMO

Treatment of oral pathogens is important for both oral and systemic health. The antimicrobial activity of chitosan (CS)-based scaffolds either loading antibiotics or compositing with other agents are well documented. However, the intrinsic antibacterial activity of CS scaffolds alone has never been reported. Herein, we fabricated the non-crosslinked CS scaffold and investigated its antibacterial activity against typical oral pathogens, Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans. We found both pathogens were completely killed by 1 mg CS scaffolds at 6 h, due largely to the CS-induced time-dependent bacteria clustering. Interestingly, ß-glycerophosphate crosslinked scaffolds showed no antibacterial activity. In conclusion, the bactericidal activity of CS scaffolds alone is reported for the first time. Together with the biodegradability, physical stability, biocompatibility and great antibacterial activity, the non-crosslinked CS scaffolds may have great potentials not only in treating oral diseases but also in wound healing and tissue engineering.


Assuntos
Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/farmacologia , Quitosana , Porphyromonas gingivalis/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Alicerces Teciduais , Células Cultivadas , Quitosana/análogos & derivados , Quitosana/farmacologia , Células Epiteliais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA