Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(25): 14602-14608, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522869

RESUMO

Bioinspired actuators with stimuli-responsive and deformable properties are being pursued in fields such as artificial tissues, medical devices and diagnostics, and intelligent biosensors. These applications require that actuator systems have biocompatibility, controlled deformability, biodegradability, mechanical durability, and stable reversibility. Herein, we report a bionic actuator system consisting of stimuli-responsive genetically engineered silk-elastin-like protein (SELP) hydrogels and wood-derived cellulose nanofibers (CNFs), which respond to temperature and ionic strength underwater by ecofriendly methods. Programmed site-selective actuation can be predicted and folded into three-dimensional (3D) origami-like shapes. The reversible deformation performance of the SELP/CNF actuators was quantified, and complex spatial transformations of multilayer actuators were demonstrated, including a biomimetic flower design with selective petal movements. Such actuators consisting entirely of biocompatible and biodegradable materials will offer an option toward constructing stimuli-responsive systems for in vivo biomedicine soft robotics and bionic research.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Biônica/métodos , Celulose/química , Elastina/química , Elastina/genética , Hidrogéis/química , Conformação Molecular , Nanofibras/química , Engenharia de Proteínas , Robótica/métodos , Seda/química , Seda/genética
2.
Angew Chem Int Ed Engl ; 61(18): e202117042, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35132754

RESUMO

Circularly polarized light (CPL) is key to asymmetric photochemistry as it could impart the chiral organization information into chemical products. Here, we demonstrate the circular polarization capacity of chiral cellulose nanocrystal (CNC) films to trigger photo-alignment of achiral supramolecular polymers into helical structures. Right-handed transmitted (T-) CPL was generated from self-assembled CNC films, which induced amorphous azobenzene (Azo) supramolecular polymers into chiral structures. The chiral induction effect of T-CPL is enhanced on Azo polymers with longer spacers. The absorptive dissymmetry factor (gabs ) values of liquid-crystal supramolecular polymers can be amplified significantly (over 10 times) after T-CPL irradiation. Moreover, by integrating carbon dots into CNC films, CPL emission with a considerable luminescence dissymmetry factor (glum ) up to -0.66 was achieved, and it could be used for the photo-alignment of Azo polymers with high chiroptical properties. This work provides new insight for the photo modulation of supramolecular polymers by CPL-active materials.


Assuntos
Celulose , Nanopartículas , Celulose/química , Luminescência , Polímeros/química
3.
Adv Sci (Weinh) ; 10(13): e2207233, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905237

RESUMO

Structure design provides an effective solution to develop advanced soft materials with desirable mechanical properties. However, creating multiscale structures in ionogels to obtain strong mechanical properties is challenging. Here, an in situ integration strategy for producing a multiscale-structured ionogel (M-gel) via ionothermal-stimulated silk fiber splitting and moderate molecularization in the cellulose-ions matrix is reported. The produced M-gel shows a multiscale structural superiority comprised of microfibers, nanofibrils, and supramolecular networks. When this strategy is used to construct a hexactinellid inspired M-gel, the resultant biomimetic M-gel shows excellent mechanical properties including elastic modulus of 31.5 MPa, fracture strength of 6.52 MPa, toughness reaching 1540 kJ m-3 , and instantaneous impact resistance of 3.07 kJ m-1 , which are comparable to those of most previously reported polymeric gels and even hardwood. This strategy is generalizable to other biopolymers, offering a promising in situ design method for biological ionogels that can be expanded to more demanding load-bearing materials requiring greater impact resistance.


Assuntos
Celulose , Seda , Biopolímeros , Seda/química
4.
Bioresour Technol ; 346: 126478, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34910973

RESUMO

The seawater electrochemical pretreatment (ECP) was employed to upgrade the bio-oil of corn stalk in the paper. The seawater and its simulants were used as electrolytes without additional reagents. Moreover, the effect of seawater ECP under different conditions on the products distribution of pyrolysis bio-oil of pretreated corn stalks was investigated. The results showed that pretreatment effectively deconstructed the lignin and made cellulose exposed. Especially, under the optimum conditions (3.5 wt% NaCl, 15 V and 4 h), most of lignin was destroyed, and cellulose and hemicellulose were remained in residual solids. Furthermore, the levoglucosan and furfural were enriched in the pyrolysis bio-oil of corn stalk after seawater ECP, reaching 23.22 % and 14.14 %, respectively. Overall, this work presented a novel and green pretreatment process to optimize the components and structure of corn stalks as well as upgrade the bio-oil of corn stalk pyrolysis.


Assuntos
Furaldeído , Pirólise , Biomassa , Glucose/análogos & derivados , Lignina , Água do Mar , Zea mays
5.
Bioresour Technol ; 363: 127876, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36049712

RESUMO

The condensation of lignin under acidic conditions inhibited the subsequent value-added utilization of lignin, and the condensed lignin covered the biomass surface. Here, a method of benzenesulfonic acid pretreatment combined with nucleophilic reagents promoted pyrolytic saccharification and lignin hydrogenation was reported. The anhydrosugar content in the pyrolysis bio-oil increased from 66.91% to 69.00%, 72.88%, and 72.16% via adding methanol, propionaldehyde, 3-hydroxylic-2-naphthoic acid, respectively. The characterization of the biomass surface structure and the calculation of bond lengths indicated that carbonium ions prefer to bind with the added nucleophilic reagent rather than the lignin fragment. Furthermore, the quenching of the carbonium ions preserved the ß-O-4 bond, as demonstrated in 2D NMR. In the subsequent hydrogenation reaction, it was found that methanol facilitated the production of lignin monomer. The calculation also revealed that the quenching of the carbonium ions with methanol reduced the bond-breaking energy of the ß-O-4 bond.


Assuntos
Lignina , Pirólise , Biomassa , Indicadores e Reagentes , Íons , Lignina/química , Metanol
6.
Bioresour Technol ; 363: 127989, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126848

RESUMO

In this study, the hydrothermal and photocatalytic synergistic pretreatment for improving the full component utilization of corn stalk based on lignin first biorefining was employed to generate carbohydrates and obtain modified lignin. The results showed that the highest lignin removal ratio (40.70 %) and cellulose retention ratio (92.64 %) were obtained due to the smallest energy gap (6.05 eV) and the largest penetration distance (1.73 Å) between GVL and the lignin. And the yield of carbohydrates increased from 1.95 % to 58.17 % after hydrothermal pretreatment at 180 ℃. Furthermore, the modified lignin enhanced the flocculation effect, resulting in the increase of the removal of safranine-T by 6 times. In addition, the chemical and physical properties of modified lignin were studied and the mechanism of photocatalysis modification was explored. The research provides a new pretreatment method for the utilization of biomass and simultaneously achieves carbohydrate enrichment in bio-oil and purification of dye wastewater.


Assuntos
Lignina , Zea mays , Biomassa , Celulose/química , Hidrólise , Lignina/química , Águas Residuárias , Zea mays/química
8.
Adv Mater ; 33(28): e2000619, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32310313

RESUMO

There is currently enormous and growing demand for flexible electronics for personalized mobile equipment, human-machine interface units, wearable medical-healthcare systems, and bionic intelligent robots. Cellulose is a well-known natural biopolymer that has multiple advantages including low cost, renewability, easy processability, and biodegradability, as well as appealing mechanical performance, dielectricity, piezoelectricity, and convertibility. Because of its multiple merits, cellulose is frequently used as a substrate, binder, dielectric layer, gel electrolyte, and derived carbon material for flexible electronic devices. Leveraging the advantages of cellulose to design advanced functional materials will have a significant impact on portable intelligent electronics. Herein, the unique molecular structure and nanostructures (nanocrystals, nanofibers, nanosheets, etc.) of cellulose are briefly introduced, the structure-property-application relationships of cellulosic materials summarized, and the processing technologies for fabricating cellulose-based flexible electronics considered. The focus then turns to the recent advances of cellulose-based functional materials toward emerging intelligent electronic devices including flexible sensors, optoelectronic devices, field-effect transistors, nanogenerators, electrochemical energy storage devices, biomimetic electronic skins, and biological detection devices. Finally, an outlook of the potential challenges and future prospects for developing cellulose-based wearable devices and bioelectronic systems is presented.


Assuntos
Celulose , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais , Nanofibras , Nanoestruturas
9.
Carbohydr Polym ; 272: 118473, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34420732

RESUMO

Abundant and renewable cellulose is a potential candidate for petroleum-derived synthetic polymers. However, the efficient dissolution of this material is problematic because of the high cost, severe reaction condition (e.g., high temperature) and environmentally unfriendly (e.g., toxic reagents, and solvent recyclability). Herein, to realize the room temperature dissolution of cellulose with an inexpensive and eco-friendly solvent, we design a novel low-cost deep eutectic solvent that is composed of zinc chloride, water and phosphoric acid for the efficient dissolution of cellulose. This solvent is featured as having both the superior hydrogen bonding acidity and the hydrogen bonding basicity, and thus can act as a hydrogen bond molecular scissors to cleave the hydrogen bonds within cellulose. In this process, microcrystalline cellulose can be easily dissolved in the solvent at room temperature with a dissolution ratio up to 15 wt%. The dissolved cellulose can also be recovered without any derivatization. The universality, recyclability and pilot production of dissolving cellulose using this solvent are also demonstrated. This work provides a new strategy for the design of novel deep eutectic solvent capable of disrupting the hydrogen bonds of cellulose under mild conditions.


Assuntos
Solventes Eutéticos Profundos , Temperatura , Celulose , Ligação de Hidrogênio , Solubilidade , Água/química
10.
Carbohydr Polym ; 207: 160-168, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599995

RESUMO

Given its health benefits to the human body, quercetin (QT) offers promising applications in the healthcare food and pharmaceutical industries. However, the instability, low water solubility and low bioavailability of QT remain to be solved. In this paper, cellulose nanofiber (CNF) was used as an effective nanoscale carrier to alleviate these problems. By adjusting the solvent composition ratio and processing method, QT was optimally immobilized on CNF surfaces and was eventually encapsulated in the CNF matrices, forming a CNF/QT nanoformulation. A high loading capacity of 78.91% and encapsulation efficiency of 88.77% were achieved simultaneously. The nanoformulation exhibited better dietary performance and antioxidant activity than raw QT. Moreover, sustained release of QT was demonstrated in vitro. These results reveal that CNF is an ideal natural nanoscale dietary carrier and offers high encapsulation efficiency for healthcare supplementation. This work also provides a promising nanoformulation candidate for managing sustained antioxidant requirements.


Assuntos
Celulose/química , Preparações de Ação Retardada/química , Sequestradores de Radicais Livres/química , Nanofibras/química , Quercetina/química , Liberação Controlada de Fármacos , Solubilidade
11.
ChemSusChem ; 10(8): 1692-1700, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-28054749

RESUMO

Lignocellulosic biomass is an abundant and renewable resource for the production of biobased value-added fuels, chemicals, and materials, but its effective exploitation by an energy-efficient and environmentally friendly strategy remains a challenge. Herein, a facile approach for efficiently cleaving lignin-carbohydrate complexes and ultrafast fractionation of components from wood by microwave-assisted treatment with deep eutectic solvent is reported. The solvent was composed of sustainable choline chloride and oxalic acid dihydrate, and showed a hydrogen-bond acidity of 1.31. Efficient fractionation of lignocellulose with the solvent was realized by heating at 80 °C under 800 W microwave irradiation for 3 min. The extracted lignin showed a low molecular weight of 913, a low polydispersity of 1.25, and consisted of lignin oligomers with high purity (ca. 96 %), and thus shows potential in downstream production of aromatic chemicals. The other dissolved matter mainly comprised glucose, xylose, and hydroxymethylfurfural. The undissolved material was cellulose with crystal I structure and a crystallinity of approximately 75 %, which can be used for fabricating nanocellulose. Therefore, this work promotes an ultrafast lignin-first biorefinery approach while simultaneously keeping the undissolved cellulose available for further utilization. This work is expected to contribute to improving the economics of overall biorefining of lignocellulosic biomass.


Assuntos
Biomassa , Biopolímeros/química , Carboidratos/química , Lignina/química , Micro-Ondas , Solventes/química , Madeira/química , Hidrólise
12.
ChemSusChem ; 7(1): 154-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24420495

RESUMO

This article describes the fabrication of nanocellulose fibers (NCFs) with different morphologies and surface properties from biomass resources as well as their self-aggregation into lightweight aerogels. By carefully modulating the nanofibrillation process, four types of NCFs could be readily fabricated, including long aggregated nanofiber bundles, long individualized nanofibers with surface C6 -carboxylate groups, short aggregated nanofibers, and short individualized nanofibers with surface sulfate groups. Free-standing lightweight aerogels were obtained from the corresponding aqueous NCF suspensions through freeze-drying. The structure of the aerogels could be controlled by manipulating the type of NCFs and the concentration of their suspensions. A possible mechanism for the self-aggregation of NCFs into two- or three-dimensional aerogel nanostructures was further proposed. Owing to web-like structure, high porosity, and high surface reactivity, the NCF aerogels exhibited high mechanical flexibility and ductility, and excellent properties for water uptake, removal of dye pollutants, and the use as thermal insulation materials. The aerogels also displayed sound-adsorption capability at high frequencies.


Assuntos
Celulose/química , Nanoestruturas/química , Absorção , Adsorção , Corantes/química , Fibra de Algodão , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanofibras/química , Nanofibras/ultraestrutura , Nanoestruturas/ultraestrutura , Som , Condutividade Térmica , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA