Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(9): 4490-4606, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38502087

RESUMO

Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.


Assuntos
Materiais Biomiméticos , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Humanos , Animais , Biomineralização , Osso e Ossos/química , Osso e Ossos/metabolismo , Biomimética/métodos , Dente/química
2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542241

RESUMO

As the population ages, the number of patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA) continues to increase. Infections after primary arthroplasty are rare but have high rates of morbidity and mortality, as well as enormous financial implications for healthcare systems. Numerous methods including the use of superhydrophobic coatings, the incorporation of antibacterial agents, and the application of topographical treatments have been developed to reduce bacterial attachment to medical devices. However, most of these methods require complex manufacturing processes. Thus, the main purpose of this study was to apply biocoatings to titanium (Ti) surfaces to increase their infection resistance and osteoconductivity via simple processes, without organic reagents. We modified titanium surfaces with a combination of aminomalononitrile (AMN) and an antibiotic-loaded mesoporous bioactive glass (MBG) and evaluated both the antibacterial effects of the coating layer and its effect on osteoblast proliferation and differentiation. The properties of the modified surface, such as the hydrophilicity, roughness, and surface morphology, were characterized via contact angle measurements, atomic force microscopy, and scanning electron microscopy. The cell proliferation reagent WST-1 assay and the alkaline phosphatase (ALP) assay were used to determine the degrees of adhesion and differentiation, respectively, of the MG-63 osteoblast-like cells on the surface. Antimicrobial activity was evaluated by examining the survival rate and inhibition zone of Escherichia coli (E. coli). The AMN coating layer reduced the water contact angle (WCA) of the titanium surface from 87° ± 2.5° to 53° ± 2.3° and this change was retained even after immersion in deionized water for five weeks, demonstrating the stability of the AMN coating. Compared with nontreated titanium and polydopamine (PDA) coating layers, the AMN surface coating increased MG-63 cell attachment, spreading, and early ALP expression; reduced E. coli adhesion; and increased the percentage of dead bacteria. In addition, the AMN coating served as an adhesion layer for the subsequent deposition of MBG-containing antibiotic nanoparticles. The synergistic effects of the AMN layer and antibiotics released from the MBG resulted in an obvious E. coli inhibition zone that was not observed in the nontreated titanium group.


Assuntos
Escherichia coli , Titânio , Humanos , Titânio/farmacologia , Titânio/química , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Interações Hidrofóbicas e Hidrofílicas , Bactérias , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Osteoblastos
3.
BMC Oral Health ; 24(1): 673, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851679

RESUMO

BACKGROUND: Early childhood caries (ECC) remain a serious oral health problem on a global scale. Risk-based caries management (RBCM) implemented in some parts of the world has been effective in preventing ECC. However, there is a lack of prospective research on the application of RBCM among Chinese children, and little is known about its effectiveness. The purpose of this study was to evaluate the effectiveness of RBCM in preventing caries among children aged 3-5 years in Wanzhou District, Chongqing Municipality, China. METHODS: Three- to five-year-old children from four kindergartens in Wanzhou were randomly selected for baseline dental examination and caries risk assessment (CRA) and randomly assigned to the experimental group (EG) or the control group (CG) according to the kindergarten. The EG received caries prevention measures of different intensities based on the child's caries risk level. The CG received full-mouth fluoride twice a year according to standard prevention, regardless of their caries risk. One year later, another dental examination and CRA were conducted, to observe changes in the decayed, missing, and filled teeth (dmft) index and caries risk, and to analyze potential factors that may affect the incidence of new caries. RESULTS: Complete data were collected from 291 children (EG, N = 140, 84.8%; CG, N = 181, 83.4%). A total of 25.7% of the EG and 50.3% of the CG children developed new caries, with newly added dmft scores of 0.54 ± 1.12 and 1.32 ± 1.72, respectively (P < 0.05). Multivariate logistic regression indicated that children living in rural areas, assigned to the CG, and rated as high-risk at baseline were more likely to develop new caries (P < 0.05). The proportion of children with an increased caries risk in the EG was significantly lower than that in the CG (P < 0.05). CONCLUSIONS: RBCM effectively prevented new caries in 3- to 5-year-old Wanzhou children and reduced the proportion of children at increased risk of caries. It is an effective approach for preventing ECC. CLINICAL TRIAL REGISTRATION: This trial was registered in the Chinese Clinical Trials Register. The registration number was ChiCTR230067551 (11/01/2023).


Assuntos
Cariostáticos , Índice CPO , Cárie Dentária , Humanos , Cárie Dentária/prevenção & controle , Cárie Dentária/epidemiologia , Pré-Escolar , China/epidemiologia , Método Simples-Cego , Masculino , Feminino , Cariostáticos/uso terapêutico , Medição de Risco , Estudos Prospectivos , Suscetibilidade à Cárie Dentária , Seguimentos , Resultado do Tratamento , Fluoretos/uso terapêutico , População do Leste Asiático
4.
Proc Natl Acad Sci U S A ; 117(49): 30966-30972, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229548

RESUMO

Organic Fenton-like catalysis has been recently developed for water purification, but redox-active compounds have to be ex situ added as oxidant activators, causing secondary pollution problem. Electrochemical oxidation is widely used for pollutant degradation, but suffers from severe electrode fouling caused by high-resistance polymeric intermediates. Herein, we develop an in situ organic Fenton-like catalysis by using the redox-active polymeric intermediates, e.g., benzoquinone, hydroquinone, and quinhydrone, generated in electrochemical pollutant oxidation as H2O2 activators. By taking phenol as a target pollutant, we demonstrate that the in situ organic Fenton-like catalysis not only improves pollutant degradation, but also refreshes working electrode with a better catalytic stability. Both 1O2 nonradical and ·OH radical are generated in the anodic phenol conversion in the in situ organic Fenton-like catalysis. Our findings might provide a new opportunity to develop a simple, efficient, and cost-effective strategy for electrochemical water purification.


Assuntos
Eletroquímica , Peróxido de Hidrogênio/química , Ferro/química , Compostos Orgânicos/química , Polímeros/química , Purificação da Água , Catálise , Eletrodos , Fluorescência , Radical Hidroxila/análise , Fenóis/química , Superóxidos/análise
5.
Zhonghua Nan Ke Xue ; 29(8): 682-687, 2023 Aug.
Artigo em Zh | MEDLINE | ID: mdl-38619513

RESUMO

OBJECTIVE: To investigate the expression of SCD1 in TFE3-rRCC and its effect on the proliferation and migration of TFE3-rRCC cells. METHODS: GEPIA database was used to analyze the expression level of SCD1 in different tumors and its effect on the prognosis of patients. The expression levels of SCD1 in TFE3-rRCC patients and cell lines UOK109 and UOK120 were detected by QPCR and Western blot. Liposomal shRNA was used to knock down SCD1 expression in cell lines. The changes of cell proliferation and migration ability before and after SCD1 knockdown were detected by CCK-8 and Transwell experiments. RESULTS: SCD1 expression levels were higher in all three common renal cancers, and patients with high SCD1 expression had shorter survival and worse prognosis (Logrank P<0.001). The mRNA and protein levels of SCD1 were also significantly increased in renal cancer tissues of patients with high expression of TFE3 and in TFE3-rRCC cell lines UOK109 and UOK120. After SCD1 knockdown, the proliferation and migration ability of UOK109 and UOK120 cells decreased significantly. CONCLUSION: SCD1 is highly expressed in TFE3-rRCC and can promote the proliferation and migration of TFE3-rRCC cell lines, which may be a key molecule in promoting the development of TFE3-rRCC.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lipossomos , Humanos , Western Blotting , Linhagem Celular , Proliferação de Células , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Estearoil-CoA Dessaturase
6.
Environ Res ; 215(Pt 2): 114376, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165857

RESUMO

Traditional corrosion inhibitors make great contribution to metal protection, but also cause environmental pollution. To solve the problem, plant extracts as green corrosion inhibitors have attracted much attention in recent years. Plants are good raw materials for corrosion inhibitors and also meet the requirements of industry. However, they have not been successfully applied in industry due to the unknown composition of the effective corrosion inhibitors and large dosage thereof. Therefore, cinchonain IIa was separated from Uncaria laevigata with abundant sources and low cost from nature in this work. Here we hypothesized that cinchonain IIa could show good corrosion inhibition performance for Q235 steel in the acidic medium. Through experiments and theoretical calculation, we studied the corrosion inhibition effect of cinchonain IIa on Q235 in 1 M HCl solution at 298 K for 48 h. Electrochemical experiments revealed that the inhibition efficiency of 200 mg/L cinchonain IIa in 1 M HCl for Q235 steel was 94.08% for 48 h. It even showed over 93% corrosion inhibition efficiency and durable protection performance to 28 d. Surface observations indicated that cinchonain IIa were firmly attached to the steel surface by forming a protective film. Moreover, quantum chemical calculation and molecular dynamics simulation revealed the inhibition mechanism at molecular and atomic level. Compared with some plant extracts, here we demonstrate that the outstanding advantages of cinchonain IIa include sustained protective effect, small dosage, and low toxicity. Accordingly, it may be used as a green industrial corrosion inhibitor with great potential in oilfield acidification and acid pickling.


Assuntos
Cáusticos , Uncaria , Corrosão , Extratos Vegetais , Aço/química
7.
J Am Chem Soc ; 143(34): 13557-13572, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34357768

RESUMO

Metal-organic framework nanoparticles (nanoMOFs) have been widely studied in biomedical applications. Although substantial efforts have been devoted to the development of biocompatible approaches, the requirement of tedious synthetic steps, toxic reagents, and limitations on the shelf life of nanoparticles in solution are still significant barriers to their translation to clinical use. In this work, we propose a new postsynthetic modification of nanoMOFs with phosphate-functionalized methoxy polyethylene glycol (mPEG-PO3) groups which, when combined with lyophilization, leads to the formation of redispersible solid materials. This approach can serve as a facile and general formulation method for the storage of bare or drug-loaded nanoMOFs. The obtained PEGylated nanoMOFs show stable hydrodynamic diameters, improved colloidal stability, and delayed drug-release kinetics compared to their parent nanoMOFs. Ex situ characterization and computational studies reveal that PEGylation of PCN-222 proceeds in a two-step fashion. Most importantly, the lyophilized, PEGylated nanoMOFs can be completely redispersed in water, avoiding common aggregation issues that have limited the use of MOFs in the biomedical field to the wet form-a critical limitation for their translation to clinical use as these materials can now be stored as dried samples. The in vitro performance of the addition of mPEG-PO3 was confirmed by the improved intracellular stability and delayed drug-release capability, including lower cytotoxicity compared with that of the bare nanoMOFs. Furthermore, z-stack confocal microscopy images reveal the colocalization of bare and PEGylated nanoMOFs. This research highlights a facile PEGylation method with mPEG-PO3, providing new insights into the design of promising nanocarriers for drug delivery.


Assuntos
Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Polietilenoglicóis/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Simulação de Dinâmica Molecular , Nanopartículas/química , Fosfatos/química
8.
J Craniofac Surg ; 32(7): 2441-2445, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33710053

RESUMO

ABSTRACT: The authors analyzed the three-dimensional postoperative condylar position change across the plating systems. This retrospective study was conducted with the patients who underwent bilateral sagittal split ramus osteotomy with setback surgery. The condylar change was analyzed from preoperative cone-beam computed tomography to postoperative 1 month (T1) and postoperative 6 months (T2) using superimposition software, automatically merging based on the anterior cranial base. The condylar changes during T1 and T2 were analyzed across the four types of plates (4-hole sliding, heart-shaped, 3-hole sliding, and 4-hole conventional) Mean intraclass correlation coefficient values were consistently high for each measurement (>0.850). During T1, the conventional plate had a decreased condylar anterior distance when compared with the 3-hole sliding plate (P = 0.032). During T2, the conventional plate had an increased condylar posterior distance when compared with the 3-hole sliding plate (P = 0.031). Superimposition software based on the anterior cranial base could be available for measurement of condylar position with highly reproducible results. After bilateral sagittal split ramus osteotomy, the 3-hole sliding plate could effectively compensate for the anterior displacement of the condyle compared to other plates.


Assuntos
Implantes Dentários , Procedimentos Cirúrgicos Ortognáticos , Humanos , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Côndilo Mandibular/diagnóstico por imagem , Côndilo Mandibular/cirurgia , Osteotomia Sagital do Ramo Mandibular , Estudos Retrospectivos
9.
Anal Chem ; 92(5): 3990-3997, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020800

RESUMO

Mercury (Hg), as a highly harmful environmental pollutant, poses severe ecological and health risks even at low concentrations. Accurate and sensitive methods for detecting Hg2+ ions in aquatic environments are highly needed. In this work, we developed a highly sensitive fluorescence sensor for Hg2+ detection with an integrated use of biosynthetic CdSe/CdS quantum dots (QDs) and liposome carrier signal amplification. To construct such a sensor, three single-stranded DNA probes were rationally designed based on the thymine-Hg2+-thymine (T-Hg2+-T) coordination chemical principles and by taking advantage of the biocompatibility and facile-modification properties of the biosynthetic QDs. Hg2+ could be determined in a range from 0.25 to 100 nM with a detection limit of 0.01 nM, which met the requirements of environmental sample detection. The sensor also exhibited a high selectivity for Hg2+ detection in the presence of other high-level metal ions. A satisfactory capacity of the sensor for detecting environmental samples including tap water, river water, and landfill leachate was also demonstrated. This work opens up a new application scenario for biosynthetic QDs and holds a great potential for environmental monitoring applications.


Assuntos
Lipossomos/química , Mercúrio/análise , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Compostos de Cádmio/química , DNA de Cadeia Simples/química , Monitoramento Ambiental , Água Doce/análise , Concentração de Íons de Hidrogênio , Limite de Detecção , Compostos de Selênio/química , Sulfetos/química , Timina/química , Poluentes Químicos da Água/análise
10.
Biochem Biophys Res Commun ; 526(3): 827-832, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32273088

RESUMO

Mechanical properties of biological tissues are increasingly recognized as an important parameter for the indication of disease states as well as tissue homeostasis and regeneration. Multipotent mesenchymal stromal/stem cells (MSCs), which play important roles in bone formation and remodeling, are potential cell sources for regenerative medicine. However, the cellular mechanical properties of differentiating MSCs corresponding to the substrate stiffness has not been sufficiently studied. In this study, we used Atomic Force Microscopy (AFM) to measure changes of stiffness of human MSCs cultured in rigid Petri dish and on polyacrylamide (PA) substrates during osteogenic differentiation. The results showed that the Young's modulus of MSC cytoplasmic outer region increased over time during osteogenesis. There is a strong linear correlation between the osteogenic induction time and the Young's modulus of the cells cultured in rigid Petri dishes in the first 15 days after the induction; the Young's modulus approaches to a plateau after day 15. On the other hand, the Young's moduli of MSCs cultured on PA gels with stiffness of 7 kPa and 42 kPa also increase over time during osteogenic differentiation, but the inclination of such increase is much smaller than that of MSCs differentiating in rigid dishes. Herein, we established a protocol of AFM measurement to evaluate the maturation of stem cell osteogenic differentiation at the single cell level and could encourage further AFM applications in tissue engineering related to mechanobiology.


Assuntos
Módulo de Elasticidade/fisiologia , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica/métodos , Osteogênese/fisiologia , Resinas Acrílicas/química , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Propriedades de Superfície , Engenharia Tecidual
11.
Environ Sci Technol ; 58(26): 11205-11208, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904430
12.
Int J Mol Sci ; 19(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848991

RESUMO

pH-sensitive polymer⁻liposomes can rapidly release their payloads. However, it is difficult to simultaneously achieve stability and pH-responsiveness in the polymer⁻liposomes. In this study, stable and pH-sensitive crosslinked polymer⁻liposomes were fabricated through electrostatic interactions. The pH-sensitive copolymer methoxy poly(ethylene glycol)-block-poly(methacrylic acid)-cholesterol (mPEG-b-P(MAAc)-chol) and crosslinking reagent poly(ethylene glycol) with end-capped with lysine (PEG-Lys2) were synthesized and characterized. At physiological conditions, the pH-sensitive copolymers were anionic and interacted electrostatically with the cationic crosslinker PEG-Lys2, forming the electrostatically-crosslinked polymer⁻liposomes and stabilizing the liposomal structure. At pH 5.0, the carboxylic groups in mPEG-b-P(MAAc)-chol were neutralized, and the liposomal structure was destroyed. The particle size of the crosslinked polymer⁻liposomes was approximately 140 nm and the polymer⁻liposomes were loaded with the anticancer drug doxorubicin. At pH 7.4, the crosslinked polymer⁻liposomes exhibited good stability with steady particle size and low drug leakage, even in the presence of fetal bovine serum. At pH 5.0, the architecture of the crosslinked polymer⁻liposomes was damaged following rapid drug release, as observed by using transmission electron microscopy and their apparent size variation. The crosslinked polymer⁻liposomes were pH-sensitive within the endosome and in the human breast cancer cells MDA-MB-231, as determined by using confocal laser scanning microscopy. The intracellular drug release profiles indicated cytotoxicity in cancer cells. These results indicated that the highly-stable and pH-sensitive electrostatically-crosslinked polymer⁻liposomes offered a potent drug-delivery system for use in anticancer therapies.


Assuntos
Antineoplásicos/química , Lipossomos/química , Polímeros/química , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química
13.
Hum Mol Genet ; 24(19): 5542-54, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26199319

RESUMO

Skeletal muscle requires adequate membrane trafficking and remodeling to maintain its normal structure and functions. Consequently, many human myopathies are caused by mutations in membrane trafficking machinery. The large GTPase dynamin-2 (Dyn2) is best known for catalyzing membrane fission during clathrin-mediated endocytosis (CME), which is critical for cell signaling and survival. Despite its ubiquitous expression, mutations of Dyn2 are associated with two tissue-specific congenital disorders: centronuclear myopathy (CNM) and Charcot-Marie-Tooth (CMT) neuropathy. Several disease models for CNM-Dyn2 have been established to study its pathogenic mechanism; yet the cellular and biochemical effects of these mutations are still not fully understood. Here we comprehensively compared the biochemical activities of disease-associated Dyn2 mutations and found that CNM-Dyn2 mutants are hypermorphic with enhanced membrane fission activity, whereas CMT-Dyn2 is hypomorphic. More importantly, we found that the expression of CNM-Dyn2 mutants does not impair CME in myoblast, but leads to T-tubule fragmentation in both C2C12-derived myotubes and Drosophila body wall muscle. Our results demonstrate that CNM-Dyn2 mutants are gain-of-function mutations, and their primary effect in muscle is T-tubule disorganization, which explains the susceptibility of muscle to Dyn2 hyperactivity.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Proteínas de Drosophila/genética , Drosophila/metabolismo , Dinamina II/genética , Mutação , Miopatias Congênitas Estruturais/patologia , Animais , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Clatrina/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Dinamina II/metabolismo , Endocitose , Humanos , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo
14.
Cell Physiol Biochem ; 44(5): 1995-2004, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29237156

RESUMO

BACKGROUND/AIMS: Coronary microembolization (CME) can lead to no-reflow or slow reflow, which is one of the important reasons for loss of clinical benefit from myocardial reperfusion therapy. MicroRNAs and autophagy are heavily implicated in the occurrence and development of almost all cardiovascular diseases. Therefore, the present study was designed to investigate the role of miR-30e-3p and autophagy in CME-induced myocardial injury rat model. METHODS: Sixty rats were randomly divided into six groups: sham, CME 1h,3h,6h,9h, and 12h (n = 10 per group). Our CME rat model was created by injecting polyethylene microspheres (42mm) into the left ventricle of the heart; the sham group was injected with same volume of normal saline. The cardiac function and serum cardiac troponin I (cTnI) level of each group was measured. HE staining and HBFP staining were used to evaluate the myocardial micro-infarction area of myocardium tissue samples. Then RT-qPCR and western blot were used to detect the expression of miR-30e-3p and, autophagy related protein LC3-II and p62, respectively. Transmission electron microscope (TEM) was used to identify autophagic vacuoles in tissue samples. RESULTS: The cardiac function of the CME 6h,9h, and 12h groups were significantly decreased compared to the sham group (P < 0.05) and the cTnI level in each group were also significantly increased (P < 0.05). The expression of miR-30e-3p in the CME 6h, 9h and 12h group were decreased significantly compared with the sham group (P < 0.05). Meanwhile, the expression of autophagy related protein LC3-II decreased significantly and p62 increased significantly in the CME 9h and 12h group (P < 0.05). TEM images showed typical autophagic vacuoles for each of the CME groups. CONCLUSIONS: Myocardial miR-30e-3p is down regulated after CME and is accompanied by inhibited autophagy and decreased cardiac function. Therefore, miR-30e-3p may be involved in CME-induced cardiac dysfunction by regulating myocardial autophagy.


Assuntos
Autofagia , Embolia/patologia , Traumatismos Cardíacos/etiologia , MicroRNAs/metabolismo , Animais , Vasos Coronários/lesões , Vasos Coronários/patologia , Modelos Animais de Doenças , Regulação para Baixo , Ecocardiografia , Embolia/complicações , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Ventrículos do Coração/fisiopatologia , Masculino , MicroRNAs/genética , Microscopia Eletrônica de Transmissão , Microesferas , Proteínas Associadas aos Microtúbulos/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Polietileno/toxicidade , Ratos , Ratos Sprague-Dawley , Proteína Sequestossoma-1/metabolismo , Troponina I/sangue , Regulação para Cima
15.
Environ Sci Technol ; 51(17): 9580-9587, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28795807

RESUMO

Membrane fouling is the bottleneck that restricts the sustainability of membrane technology for environmental applications. Therefore, the development of novel analytical tools for characterizing membrane fouling processes is essential. In this work, we demonstrate a capability of probing the chemical structure of foulants and detecting their 3-dimentional spatial distribution on membranes based on stimulated Raman scattering (SRS) microscopy as a vibrational spectroscopic imaging approach. The adsorption process of foulants onto membrane surfaces and their aggregation process within membrane pores during the microfiltration of protein and polysaccharide solutions were clearly monitored. Pore constriction and cake layer formation were found to be the coupled membrane fouling mechanisms. This work establishes an ultrafast, highly sensitive, nondestructive and label-free imaging platform for the characterization of membrane fouling evolution. Furthermore, this work provides new insights into membrane fouling and offers a powerful tool for membrane-based process exploration.


Assuntos
Membranas Artificiais , Purificação da Água , Membranas , Microscopia , Análise Espectral Raman , Vibração
16.
J Arthroplasty ; 32(6): 1940-1945, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28082043

RESUMO

BACKGROUND: Total knee arthroplasty in the presence of a huge bone and soft-tissue defect is always a challenge. A rotating-hinged (RH) megaprosthesis is indicated for extensive soft-tissue loss with a huge bone defect such as a primary or metastatic neoplasm of the bone, repeat periprosthetic joint infection, or extensive trauma of the knee. However, the reported survivorship of RH megaprostheses is unsatisfactory. The aim of this study was to evaluate the survivorship of megaprostheses and the factors that contribute to implant survival. METHODS: A total of 103 RH knee megaprostheses were implanted in 85 patients between January 2001 and June 2013. Each prosthesis was a modular custom-made (CM) cemented or cementless fixed total knee system (United USTAR system). Clinical results and prosthesis survivorship were evaluated between the 2 groups. RESULTS: The overall survivorship of this CM knee megaprosthesis was 91% at 2 years, 83% at 5 years, and 68% at 10 years. The cumulative component survivorship was 87% in the cemented group and 96% in the cementless group at 2 years compared with 75% in the cemented group and 94% in the cementless group at 5 years. The failure mechanism included loosening in 5 and breakage in 6 patients in the cemented stem group. The survivorship of the cementless fixed component was significantly superior to that of the cemented fixed component. CONCLUSION: Our data suggest that modular RHCM knee megaprosthesis provides an acceptable clinical result. A diaphyseal long stem with cementless fixation was more reliable and durable than its cemented counterpart.


Assuntos
Artroplastia do Joelho/métodos , Cimentos Ósseos , Articulação do Joelho/cirurgia , Prótese do Joelho , Falha de Prótese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Diáfises , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sobrevivência , Adulto Jovem
17.
Chemphyschem ; 17(3): 358-63, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26639164

RESUMO

Understanding membrane fouling induced by dissolved organic matter (DOM) is of primary importance for developing effective fouling control and prevention strategies. In this work, we combine multivariate curve resolution-alternating least squares analysis with infrared attenuated total reflection mapping to explore the fouling process of microfiltration and ultrafiltration membranes caused by two typical DOMs, humic acid (HA) and bovine serum albumin (BSA). The spectral contributions of different foulants and the membrane substrate were successfully discriminated, thereby enabling the diagnosis of fouling origins. Membrane fouling caused by HA is more severe than that by BSA. Three periods, the initial adsorption stage, the equilibrium stage, and the accumulation stage, were observed for the HA-induced fouling process. The integrated approach presented herein elegantly demonstrates the spatial and temporal characterization of membrane fouling processes, along with relative concentrations of the involved species, and suggests a promising perspective for understanding the interaction mechanisms between foulant species and membranes at the molecular level.


Assuntos
Membranas/química , Polivinil/química , Animais , Bovinos , Substâncias Húmicas , Análise dos Mínimos Quadrados , Análise Multivariada , Soroalbumina Bovina/química
18.
Bioorg Med Chem Lett ; 25(13): 2690-3, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25987370

RESUMO

In our continuing search for camptothecin (CPT)-derived antitumor drugs, novel structurally diverse PEG-based 20(S)-CPT sulfonylamidine derivatives were designed, synthesized via a Cu-multicomponent reaction (MCR), and evaluated for cytotoxicity against four human tumor cell lines (A-549, MDA-MB-231, KB, and KBvin). All of the derivatives showed promising in vitro cytotoxic activity against the tested tumor cell lines, and were more potent than irinotecan. Significantly, these derivatives exhibited comparable cytotoxicity against KBvin, while irinotecan was less active against this cell line. With a concise efficient synthesis and potent cytotoxic profiles, especially significant activity towards KBvin, these compounds merit further development as a new generation of CPT-derived PEG-conjugated drug candidates.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Antineoplásicos/química , Camptotecina/síntese química , Camptotecina/química , Camptotecina/farmacologia , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cobre , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Irinotecano , Células KB , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Relação Estrutura-Atividade
19.
Environ Sci Technol ; 49(15): 9159-67, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26147721

RESUMO

Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Fermentação , Anaerobiose , Calibragem , Dióxido de Carbono/metabolismo , Metano/metabolismo , Polímeros/metabolismo , Reprodutibilidade dos Testes , Esgotos/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-38347778

RESUMO

OBJECTIVE: While clinical trials exploring stem cells for regenerating periodontal tissues have demonstrated positive results, there is a limited availability of systematic literature reviews on this subject. To gain a more comprehensive understanding of stem cell interventions in periodontal regeneration, this meta-analysis is undertaken to assess the beneficial effects of stem cells in human periodontal regeneration. METHODS: "PubMed," "Cochrane Library," "Web of Science," "Embase," "Wanfang," and "CNKI," were used to extract clinical studies related to the utilization of stem cells in repairing periodontal tissue defects. This search included studies published up until October 5, 2023. The inclusion criteria required the studies to compare the efficacy of stem cell-based therapy with stem cell-free therapy for regenerating periodontal tissues. Meta-analysis was conducted using Review Manager software (version 5.4). RESULTS: This meta-analysis synthesized findings from 15 selected studies investigating the impact of stem cell interventions on periodontal tissue regeneration. The "stem cell" group displayed a substantial reduction in clinical attachment level (CAL) compared to the "control" group within 3 to 12 months post-surgery. However, no significant differences in CAL gain were found between groups. Probing pocket depth (PPD) significantly decreased in the "stem cell" group compared to the "control" group, particularly for follow-up periods exceeding 6 months, and dental stem cell treatment exhibited notable improvements. Conversely, no significant differences were observed in PPD reduction. Gingival recession (GR) significantly decreased in the "stem cell" group compared to the "control" group at 3 to 12 months post-surgery. No significant differences were observed in GR reduction between groups. No significant differences were identified in cementoenamel junction-bone distance reduction, infrabony defect reduction, or bone mineral density increase between the two groups. Furthermore, no significant changes were observed in the gingival index, plaque index, or width of keratinized gingiva. CONCLUSION: In conclusion, while stem cell-based therapy offers promising prospects for periodontal defect treatment, there are notable limitations in the current body of research. Larger, multicenter, double-blind RCTs with robust methodologies are needed to provide more reliable evidence for stem cell-based intervention in periodontitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA