Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sep Sci ; 34(16-17): 2113-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21648081

RESUMO

To meet the demands of protein phosphorylation study, immobilized zirconium ion affinity chromatography (Zr(4+)-IMAC) monolith was prepared by combining UV-initiated polymerization of monolithic support and subsequent photografting in both capillary columns and microchannels. Hydrophilic poly(2-hydroxyethyl methacrylate (HEMA)-co-ethylene dimethacrylate (EDMA)) monolithic support was prepared under UV irradiation at the wavelength of 365 nm with monomer HEMA, crosslinker EDMA and 2,2-dimethoxy-2-phenylacetophenone as photoinitiator in 1-decanol solution, which provides good biocompatibility and permeability for biomolecule analysis. To introduce chelating ligands, such as phosphate groups, on the pore surface of monolith for metal ion immobilization, photografting of ethylene glycol methacrylate phosphate with benzophenone as the photoinitiator was performed at 254 nm for 300 s. The grafting process and metal ion immobilization can be monitored by measuring the electroosmotic flow produced by the modified monolith, providing a quantitative evaluation of post-modification. This new method for the preparation of Zr(4+)-IMAC monolith simplifies the optimization of monolith preparation and avoids the time-consuming chemical modification process. Additionally, advantages include facile preparation in microdevices, easy regenerability and good reproducibility. After optimization, the microchip-based Zr(4+)-IMAC monolith was used for phosphopeptide analysis and showed good selectivity in phosphopeptide enrichment with matrix-assisted laser desorption ionization mass spectrometry detection.


Assuntos
Cromatografia de Afinidade/métodos , Fosfopeptídeos/isolamento & purificação , Polímeros/química , Zircônio/química , Cromatografia de Afinidade/instrumentação , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Fosfatos/química , Fosfopeptídeos/química , Polímeros/síntese química
2.
Bioengineered ; 12(2): 12372-12382, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34747301

RESUMO

The discarding and burning of corn stalks in the fields after harvesting lead to environmental pollution and waste of resources. Composting is an effective way to disposal of the crop straws. Composting is a complex biochemical process and needs a detailed study in cold region. Hence, the succession process of bacteria and Actinomycetes in the process of corn stalk composting in cold region was studied by 16SrRNA. Alpha diversity analysis showed that the detection results could represent the real situation. The bacterial community diversity from high to low was F50 > F90 > F0 > F10 > F20. The results of beta analysis showed that F20 and F50 had the most similar microbial structure at the phylum level, and the difference between F0 and F20 was the largest. The dominant microbes changed from Proteobacteria and Bacteroidetes in F0 in heating stage to Firmicutes and Proteobacteria, Actinobacteria and Firmicutes in F10 during early high temperature stage, and Actinobacteria, Proteobacteria and Bacteroidetes in cooling and post composting phases. Actinobacteria and Firmicutes were the dominant bacteria in the whole composting process. In the composting process, the microbial community was mainly involved in amino acid metabolism related to nitrogen transformation and carbohydrate metabolism related to lignocellulose degradation. Lignin and hemicellulose were mainly degraded in thermophilic stage. The conversion of nitrogen and degradation of cellulose occurred mainly in the early stages of composting. The research will be helpful to understand the biochemical process of composting in cold region.


Assuntos
Bactérias/metabolismo , Lignina/metabolismo , Microbiota/fisiologia , Zea mays/microbiologia , Metabolismo dos Carboidratos/fisiologia , Celulose/metabolismo , Compostagem/métodos , Nitrogênio/metabolismo , Polissacarídeos/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA