Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(49): 20571-20582, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016278

RESUMO

The chemical industry is a major and growing source of CO2 emissions. Here, we extend the principal U.S.-based integrated assessment model, GCAM, to include a representation of steam cracking, the dominant process in the organic chemical industry today, and a suite of emerging decarbonization strategies, including catalytic cracking, lower-carbon process heat, and feedstock switching. We find that emerging catalytic production technologies only have a small impact on midcentury emissions mitigation. In contrast, process heat generation could achieve strong mitigation, reducing associated CO2 emissions by ∼76% by 2050. Process heat generation is diversified to include carbon capture and storage (CCS), hydrogen, and electrification. A sensitivity analysis reveals that our results for future net CO2 emissions are most sensitive to the amount of CCS deployed globally. The system as defined cannot reach net-zero emissions if the share of incineration increases as projected without coupling incineration with CCS. Less organic chemicals are produced in a net-zero CO2 future than those in a no-policy scenario. Mitigation of feedstock emissions relies heavily on biogenic carbon used as an alternative feedstock and waste treatment of plastics. The only scenario that delivers net-negative CO2 emissions from the organic chemical sector (by 2070) combines greater use of biogenic feedstocks with a continued reliance on landfilling of waste plastic, versus recycling or incineration, which has trade-offs.


Assuntos
Dióxido de Carbono , Incineração , Dióxido de Carbono/análise , Incineração/métodos , Indústrias , Compostos Orgânicos , Carbono , Plásticos
2.
Appl Microbiol Biotechnol ; 104(24): 10685-10696, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170326

RESUMO

The effects of several surfactants on the biosynthesis of ß-1,3-D-glucan (ß-glucan) and pullulan by Aureobasidium pullulans CCTCC M 2012259 were investigated, and Triton X-100 was found to decrease biomass formation but increase ß-glucan and pullulan production. The addition of 5 g/L Triton X-100 to the fermentation medium and bioconversion broth significantly increased ß-glucan production by 76.6% and 69.9%, respectively, when compared to the control without surfactant addition. To reveal the physiological mechanism underlying the effect of Triton X-100 on polysaccharides production, the cell morphology and viability, membrane permeability, key enzyme activities, and intracellular levels of UDPG, NADH, and ATP were determined. The results indicated that Triton X-100 increased the activities of key enzymes involved in ß-glucan and pullulan biosynthesis, improved intracellular UDPG and energy supply, and accelerated the transportation rate of precursors across the cell membrane, all of which contributed to the enhanced production of ß-glucan and pullulan. Moreover, a two-stage culture strategy with combined processes of batch fermentation and bioconversion was applied, and co-production of ß-glucan and pullulan in the presence of 5 g/L Triton X-100 additions was further improved. The present study not only provides insights into the effect of surfactant on ß-glucan and pullulan production but also presents a feasible approach for efficient production of analogue exopolysaccharides. KEY POINTS: • Triton X-100 increased ß-glucan and pullulan production under either batch fermentation or bioconversion. • Triton X-100 increased the permeability of cell membrane and accelerated the transportation rate of precursors across cell membrane. • Activities of key enzymes involved in ß-glucan and pullulan biosynthesis were increased in the presence of Triton X-100. • Intracellular UDPG levels and energy supply were improved by Triton X-100 addition.


Assuntos
Ascomicetos , Aureobasidium , Fermentação , Glucanos , Octoxinol , Proteoglicanas
3.
Luminescence ; 26(4): 289-95, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20629043

RESUMO

The Cu(2+)-imprinted cross-linked chitosan resin was synthesized and the binding characteristic of the resin to Cu(2+) was evaluated. The prepared resin was packed into a micro-glass column and used as micro-separating column. The micro-separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol-hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu(2+) in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity.


Assuntos
Quitosana/química , Resinas Compostas/química , Cobre/análise , Reagentes de Ligações Cruzadas/química , Luminescência , Impressão Molecular , Quitosana/síntese química , Resinas Compostas/síntese química , Análise de Injeção de Fluxo/instrumentação , Medições Luminescentes/instrumentação
4.
Biosens Bioelectron ; 146: 111760, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31605987

RESUMO

A novel optical fiber glucose biosensor based on fluorescent carbon quantum dots (CQDs)-glucose oxidase (GOD)/cellulose acetate (CA) complex sensitive film was fabricated, in which the dip-coating method was adopted to immobilize the CQDs-GOD/CA complex sensitive film onto the end face of the optical fiber. The surface morphology, microstructure and optical performances of the sensitive film were characterized by field emission scanning electron microscope (FESEM), atomic force microscope (AFM), Zeiss Axiovert 25 inverted microscope, Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible spectrophotometer and fluorescence spectrophotometer, respectively. The developed fiber-optic biosensor exhibits high sensitivity and repeatability for continuous online detection of low concentration glucose, allowing visualization of real-time glucose fluctuations over a period of time. The change ratios in fluorescence intensity of the biosensor are linear with glucose concentration in various ranges including micromole and nanomole levels, and the relationship between relative fluorescence intensity ratio and glucose concentration complies well with the modified Stern-Volmer equation in the range of 10-200 µmol/L with the detection limit of 6.43 µM, and in the range of 10-100 nmol/L with the detection limit of 25.79 nM, respectively.


Assuntos
Técnicas Biossensoriais/instrumentação , Glicemia/análise , Celulose/análogos & derivados , Glucose Oxidase/química , Fibras Ópticas , Carbono/química , Celulose/química , Desenho de Equipamento , Tecnologia de Fibra Óptica/instrumentação , Fluorescência , Humanos , Limite de Detecção , Pontos Quânticos/química
5.
J Agric Food Chem ; 66(26): 6585-6593, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28851212

RESUMO

Abscisic acid (ABA), as a commonly used plant growth regulator, is easy to be degraded and lose its bioactivity under sunshine. To select an eco-friendly and efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to ultraviolet (UV) light, we tested the effects of three biodegradable natural-derived high polymers, sodium lignosulfonates 3A [molecular weight (MW) > 50000, with degree of sulfonation (DS) of 0.48] and NA (20000 < MW < 50000, with DS of 0.7) and calcium lignosulfonate CASA (MW < 20000, with DS of 0.7), on the photodegradation of ABA. Lignosulfonates 3A, NA, and CASA showed significant photostabilizing capability on ABA. Lignosulfonate 3A showed preferable photostabilizing effects on ABA compared to CASA, while NA showed an intermediate effect. That indicated that lignosulfonate with a high MW and low DS had a stronger UV absorption and the hollow aggregate micelles formatted by lignosulfonate protect ABA from UV damage. Approximately 50% more ABA was kept when 280 mg/L ABA aqueous solution was irradiated by UV light for 2 h in the presence of 2000 mg/L lignosulfonate 3A. The bioactivity on wheat (JIMAI 22) seed germination was greatly kept by 3A in comparison to that of ABA alone. The 300 times diluent of 280 mg/L ABA plus 2000 mg/L 3A after 2 h of irradiation showed 20.8, 19.3, and 9.3% more inhibition on shoot growth, root growth, and root numbers of wheat seed, separately, in comparison to ABA diluent alone. We conclude that lignosulfonate 3A was an eco-friendly and efficient agent to keep ABA activity under UV radiation. This research could be used in UV-sensitive and water-soluble agrichemicals and to optimize the application times and dosages of ABA products.


Assuntos
Ácido Abscísico/química , Ácido Abscísico/farmacologia , Lignina/análogos & derivados , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Portadores de Fármacos/química , Composição de Medicamentos , Estabilidade de Medicamentos , Lignina/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA