Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(28): 11595-11602, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38950152

RESUMO

Timely diagnosis, monitoring, and management of chronic wounds play crucial roles in improving patients' quality of life, but clinical evaluation of chronic wounds is still ambiguous and relies heavily on the experience of clinician, resulting in increased social and financial burden and delay of optimal treatment. During the different stages of the healing process, specific and dynamic changes of pH values in the wound exudate can be used as biomarkers to reflect the wound status. Herein, a pH-responsive agent with well-behaved photoacoustic (PA) properties, nitrazine yellow (NY), was incorporated in poly(vinyl alcohol)/sucrose (PVA/Suc) hydrogel to construct a wearable pH-sensing patch (PVA/Suc/NY hydrogel) for monitoring of pH values during chronic wound healing. According to Rosencwaig-Gersho theory and the combination of 3D printing technology, the PA chamber volume and chopping frequency were systematically optimized to improve the sensitivity of the PA analytical system. The prepared PVA/Suc/NY hydrogel patch had excellent mechanical properties and flexibility and could maintain conformal contact with skin. Moreover, combined with the miniaturized PA analytical device, it had the potential to detect pH values (5.0-9.0) free from the color interference of blood and therapeutic drugs, which provides a valuable strategy for wound pH value monitoring by PA quantitation. This strategy of combining the wearable hydrogel patch with portable PA analysis offers broad new prospects for the treatment and management of chronic wounds due to its features of simple operation, time savings, and anti-interference.


Assuntos
Hidrogéis , Técnicas Fotoacústicas , Dispositivos Eletrônicos Vestíveis , Concentração de Íons de Hidrogênio , Hidrogéis/química , Animais , Cicatrização/efeitos dos fármacos , Álcool de Polivinil/química , Humanos
2.
Anal Chem ; 96(18): 7155-7162, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652710

RESUMO

Microplastics (MPs) can act as carriers of environmental arsenic species into the stomach with food and release arsenic species during digestion, which threatens human health. Herein, an integrated dynamic stomach model (DSM)-capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICPMS) is developed for online monitoring of the release and transformation behaviors of arsenic species loaded on MPs (As-MPs) in the simulated human stomach. The 3D-printed DSM with a soft stomach chamber enables the behaviors of gastric peristalsis, gastric and salivary fluid addition, pH adjustment, and gastric emptying (GE) to be controlled by a self-written program after oral ingestion of food with As-MPs. The gastric extract during digestion is introduced into the spiral channel to remove the large particulate impurity and online filtered to obtain the clarified arsenic-containing solution for subsequent speciation analysis of arsenic by CE-ICPMS. The digestion conditions and pretreatment processes of DSM are tracked and validated, and the release rates of As-MPs digested by DSM are compared with those digested by the static stomach model and DSM without GE. The release rate of inorganic arsenic on MPs is higher than that of organic arsenic throughout the gastric digestion process, and 8% of As(V) is reduced to As(III). The detection limits for As(III), DMA, MMA, and As(V) are 0.5-0.9 µg L-1 using DSM-CE-ICPMS, along with precisions of ≤8%. This present method provides an integrated and convenient tool for evaluating the release and transformation of As-MPs during human gastric digestion and provides a reference for exploring the interactions between MPs and metals/metalloids in the human body.


Assuntos
Arsênio , Eletroforese Capilar , Espectrometria de Massas , Microplásticos , Estômago , Arsênio/análise , Humanos , Espectrometria de Massas/métodos , Eletroforese Capilar/métodos , Microplásticos/análise , Estômago/química , Digestão , Modelos Biológicos
3.
J Hazard Mater ; 463: 132886, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37913659

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are global pollutants with emerging concerns. Methods to predict and screen their toxicity are crucial. Elemental dyshomeostasis can be used to assess toxicity of environmental pollutants. Non-targeted metallomics, combining synchrotron radiation X-ray fluorescence (SRXRF) and machine learning, has successfully differentiated cancer patients from healthy individuals. The whole idea of this work is to screen the phytotoxicity of nano polyethylene terephthalate (nPET) and micro polyethylene terephthalate (mPET) through non-targeted metallomics with SRXRF and deep learning algorithms. Firstly, Seed germination, seedling growth, photosynthetic changes, and antioxidant activity were used to evaluate the toxicity of mPET and nPET. It was showed that nPET, at 10 mg/L, was more toxic to rice seedlings, inhibiting growth and impairing chlorophyll content, MDA content, and SOD activity compared to mPET. Then, rice seedling leaves exposed to nPET or mPET was examined with SRXRF, and the SRXRF data was differentiated with deep learning algorithms. It was showed that the one-dimensional convolutional neural network (1D-CNN) model achieved 98.99% accuracy without data preprocessing in screening mPET and nPET exposure. In all, non-targeted metallomics with SRXRF and 1D-CNN can effectively screen the exposure and phytotoxicity of nPET/mPET and potentially other emerging pollutants. Further research is needed to assess the phytotoxicity of different types of MPs/NPs using non-targeted metallomics.


Assuntos
Aprendizado Profundo , Poluentes Ambientais , Humanos , Polietilenotereftalatos/toxicidade , Microplásticos , Síncrotrons , Raios X , Plásticos , Fluorescência , Plântula , Polietileno
4.
Chem Commun (Camb) ; 56(68): 9870-9873, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32840531

RESUMO

Glycoproteins always participate in various biological processes. Selective separation and enrichment of glycoproteins are of great significance for the research of pathogenesis. Herein, macroporous polymer microspheres were fabricated, and further functionalized by polyoxometalate. Thus, a simple, efficient and highly selective approach was constructed for glycoprotein enrichment from a complex matrix. The as-prepared material shows promise as a potential adsorbent in bio-separation and downstream clinical applications.


Assuntos
Glicoproteínas/química , Microesferas , Compostos de Tungstênio/química , Adsorção , Animais , Bovinos , Glicoproteínas/isolamento & purificação , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Polímeros/química , Porosidade , Soroalbumina Bovina/química , Soroalbumina Bovina/isolamento & purificação
5.
Chem Commun (Camb) ; 56(20): 3050-3053, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32048645

RESUMO

We constructed a carbon-based polymer dot (CPD) sensor to detect breast cancer based on the differences of peripheral blood cells, providing a new minimally invasive method for cancer diagnosis. This simple and extensible system exhibits clinically relevant accuracy in terms of cancer identification, making it an attractive strategy for diagnosis and prognosis.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Carbono/química , Corantes Fluorescentes/química , Leucócitos Mononucleares/patologia , Polímeros/química , Pontos Quânticos/química , Feminino , Fluorescência , Humanos , Imunidade Celular/imunologia , Leucócitos Mononucleares/imunologia , Imagem Óptica
6.
ACS Appl Mater Interfaces ; 11(41): 37471-37478, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31542918

RESUMO

Selective isolation and enrichment of phosphoproteins play critical roles for identification of biomarkers in biological applications. Herein, a kind of polyoxometalate (P5W30)/polydopamine (PDA) composite microspheres is readily synthesized via an in situ polymerization way, followed by immobilization of Ti4+ on the surface of the microspheres to obtain P5W30/PDA-Ti4+. Due to metal affinity and π stacking interaction, this novel material exhibits high selectivity to ß-casein (ß-ca), and the theoretical maximum adsorption capacity is as high as 1250 mg g-1, fitting well with the Langmuir model. The captured ß-ca can be collected by using Britton-Robinson (B-R) buffer at pH 7.0, and a recovery of 81.5% is acquired. The enrichment factor is over 150 at a mass ratio of BSA/ß-ca = 100:1, indicating that phosphoproteins can be purified by P5W30/PDA-Ti4+. Moreover, the application of P5W30/PDA-Ti4+ as sorbent in real biological samples has been investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and the consequences show that this kind of material is able to selectively isolate phosphoproteins from complex samples such as drinking milk and chicken egg white.


Assuntos
Quelantes/química , Indóis/química , Microesferas , Fosfoproteínas/isolamento & purificação , Polímeros/química , Titânio/química , Compostos de Tungstênio/química , Caseínas/química , Fosfoproteínas/química
7.
Clin Case Rep ; 5(7): 1084-1087, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28680600

RESUMO

We report about a novel imaging technique for airflow analysis, particle image velocimetry (PIV), used in a moderate obstructive sleep apnea (OSA) patient. By measuring the airflow characteristics in the upper airway at different protrusion positions, the effect of mandibular advancement device (MAD) on OSA was further understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA