Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 260: 119663, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39043354

RESUMO

As an emerging contaminant, microplastics (MPs) have received considerable attention for their potential threat to the soil environment. However, the response of soil bacterial and fungal communities to MPs exposure remains unclear. In this study, we conducted a global meta-analysis of 95 publications and 2317 observations to assess the effects of nonbiodegradable MP properties and exposure conditions on soil microbial biomass, alpha and beta diversity, and community structure. Our results indicate that MPs increased (p < 0.05) soil active microbial biomass by 42%, with the effect varying with MPs type, exposure concentration, exposure time and soil pH. MPs concentration was identified as the most important factor controlling the response of soil microbial biomass to MPs. MPs addition decreased (p < 0.05) the soil bacterial Shannon and Chao1 indices by 2% and 3%, respectively, but had limited effects (p > 0.05) on soil fungal Shannon and Chao1 indices. The type of MPs and exposure time determined the effects of MPs on bacterial Shannon and Chao1 indices, while the type of MPs and soil pH controlled the response ratios of fungal Shannon and Chao1 indices to MPs. Specifically, soil organic carbon (SOC) was the major factor regulating the response ratio of bacterial alpha diversity index to MPs. The presence of MPs did not affect soil bacterial community structure and beta diversity. Our results highlight that MPs reduced bacterial diversity and richness but increased the soil active microbial biomass, suggesting that MPs could disrupt biogeochemical cycles by promoting the growth of specific microorganisms.


Assuntos
Microplásticos , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/análise , Microplásticos/análise , Bactérias/classificação , Fungos/classificação , Microbiota , Solo/química , Biomassa , Biodiversidade
2.
J Hazard Mater ; 476: 135080, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996676

RESUMO

The current carbon dioxide (CO2) evolution-based standard method for determining biodegradable microplastics (MPs) degradation neglects its priming effect on soil organic matter decomposition, which misestimates their biodegradability. Here, a 13C natural abundance method was used to estimate the mineralization of poly(lactic acid) (PLA) MP in various agricultural soils, and to trace its utilization in different microbial groups. In alkaline soils, the PLA-derived CO2 emissions increased with increasing soil carbon/nitrogen (C/N) ratios, and the mineralization of PLA MP concentrations ranged from 3-33 %, whereas the CO2 evolution method probably over- or under-estimated the mineralization of PLA in alkaline soils with different soil C/N ratios. Low PLA mineralization (1-5 %) were found in the acidic soil, and the standard method largely overestimated the mineralization of PLA MP by 1.3- to 3.3-fold. Moreover, the hydrolysate of PLA MP was preferentially assimilated by Gram-negative bacteria, but Gram-positive bacterial decomposition mainly contributed to the release of PLA-derived CO2 at low MP concentrations (≤ 1 %). Overall, the 13C natural abundance method appears to be suitable for tracking the mineralization and microbial utilization of biodegradable PLA in soils, and the PLA-derived C is mainly assimilated and decomposed by bacterial groups.


Assuntos
Biodegradação Ambiental , Dióxido de Carbono , Microplásticos , Poliésteres , Microbiologia do Solo , Poluentes do Solo , Poliésteres/metabolismo , Poliésteres/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/química , Microplásticos/metabolismo , Solo/química , Bactérias/metabolismo , Isótopos de Carbono
3.
Sci Total Environ ; 924: 171435, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38438042

RESUMO

The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils. Alteration in soil physicochemical properties and microbial interactions within the plastisphere facilitated the enrichment of plastic-degrading microorganisms, including those involved in carbon (C) and nutrient cycling. MPs conferred a significant increase in the relative abundance of soil nitrogen (N)-fixing and phosphorus (P)-solubilizing bacteria, while decreased the abundance of soil nitrifiers and ammonia oxidisers. Depending on soil types, MPs increased bioavailable N and P contents and nitrous oxide emission in some instances. Furthermore, MPs regulated soil microbial functional activities owing to the combined toxicity of organic and inorganic contaminants derived from MPs and contaminants frequently encountered in the soil environment. However, a thorough understanding of the interactions among soil microorganisms, MPs and other contaminants still needs to develop. Since currently available reports are mostly based on short-term laboratory experiments, field investigations are needed to assess the long-term impact of MPs (at environmentally relevant concentration) on soil microorganisms and their functions under different soil types and agro-climatic conditions.


Assuntos
Microplásticos , Plásticos , Ecossistema , Carbono , Nutrientes , Solo , Microbiologia do Solo
4.
Chemosphere ; 316: 137837, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640972

RESUMO

Plastic mulched agricultural fields in Xinjiang are regarded as potential "hotspots" of microplastic (MP) contamination in China, whereas the abundance of MPs in this region is still unclear. As a carbonaceous material, current conventional methods for measuring soil organic carbon (SOC) generally do not separate the MPs from soils, which probably overestimated the soil carbon (C) sequestration. In this study, 77 agricultural soil samples under plastic film mulching were collected in Xinjiang. Afterward, the average abundance of agricultural MPs and the contribution of microplastic-carbon (MP-C) to the SOC pool were evaluated. The abundance of MPs was 12,589 pieces kg-1 soil (ranging from 4198 to 47,420 pieces kg-1 soil), and small-sized (<0.5 mm) plastic particles accounted for 93.3% of the total MPs. Interestingly, the soil salt content was positively related to the proportion of 0.1-0.5 mm MP but negatively correlated with the proportion of 0.02-0.1 mm MP, indicating that soil salinization probably controlled the degradation process of plastic residues. The average content of MP-C in the 0-20 cm layer was 25.33 kg ha-1 (ranging from 1.60 to 192.57 kg ha-1), which had a contribution of 1.59‰ (ranging from 0.05 to 14.24‰) to the SOC pool. Accordingly, we roughly estimated that the MP-C storage (0-20 cm layer) was approximately 88.66 Gg in the plastic film mulching fields of Xinjiang. Although MP is undeniably organic C, this environmental pollution cannot be regarded as "true" soil C storage, which induces the overestimation of soil C sequestration in agricultural fields. Therefore, our results highlighted that MP-C should be subtracted when estimating SOC sequestration in plastic film mulching fields of Xinjiang.


Assuntos
Plásticos , Solo , Solo/química , Plásticos/química , Microplásticos , Carbono , Agricultura/métodos , China
5.
Aquat Toxicol ; 265: 106771, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000132

RESUMO

Plastics have been recognized as an emerging pollutant and have raised global concerns due to their widespread distribution in the environment and potential harm to living systems. However, research on the threat of micro/nanoplastics (MPs/NPs) to the unique group of aquatic plants is far behind, necessitating a comprehensive review to summarize current research progress and identify future research needs. This review explores the sources and distribution patterns of MPs/NPs in aquatic environments, highlighting their uptake by aquatic plants through roots and leaves, and subsequent translocation via the vascular system facilitated by the transpiration stream. Exposure to MPs/NPs elicits diverse effects on the growth, physiology, and ecological interactions of aquatic plants, with variations influenced by plastic properties, plant species, and experimental conditions. Furthermore, the presence of MPs/NPs can impact the toxicity and bioavailability of other associated toxicants to aquatic plants. This review shows critical knowledge gaps and emphasizes the need for future research to bridge the current understanding of the limitations and challenges posed by MPs/NPs in aquatic ecosystems.


Assuntos
Microplásticos , Plantas , Disponibilidade Biológica , Transporte Biológico , Ecossistema , Microplásticos/toxicidade
6.
Sci Total Environ ; 806(Pt 3): 150714, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606872

RESUMO

The accumulation of microplastics (MPs) in agricultural fields can not only disguise soil organic carbon (SOC) storage but also affect the production of carbon dioxide (CO2) by microbial decomposition. However, little is known about the impact of this emerging pollutant on soil CO2 emissions and the functional genes related to SOC degradation. In the present study, a short-term (30-day) microcosm experiment was performed to investigate the effects of virgin and aged low-density polyethylene (LDPE) MPs on soil CO2 emissions. We also measured functional gene abundances related to starch (sga), hemicellulose (abfA, manB and xylA), cellulose (cex) and lignin (lig and mnp) degradation through a high-throughput quantitative-PCR-based chip. Compared with the soils without MPs, low doses (0.01% and 0.1%) of both virgin and aged MPs had negligible effects on SOC decomposition, whereas a high dose (1.0%) of these two MPs significantly (p < 0.05) accelerated the production of CO2 in soils by 15-17%, showing a dose-dependent effect. The presence of MPs did not significantly affect soil dissolved organic carbon or microbial biomass carbon. A higher metabolic quotient at 1.0% MP concentration indicated that the microbes were stressed and needed more substrates and energy during their metabolic process, which could likely explain the increase in CO2 emission induced by this dose of MPs. Exposure to virgin MPs significantly reduced the functional genes related to hemicellulose (abfA and manB) degradation, whereas increasing the aged MPs concentrations significantly decreased the abundances of functional genes encoding starch (sga), hemicellulose (abfA, manB and xylA), and cellulose (cex) hydrolysis. Overall, we conclude that the low dose (<0.1%) of MPs in the soils has a negligible effect on the production of CO2, but this factor should be considered in evaluating the global C budget in future research as this contaminant reaches a certain threshold (1.0%).


Assuntos
Microplásticos , Solo , Carbono , Dióxido de Carbono , Plásticos , Microbiologia do Solo
7.
J Hazard Mater ; 432: 128721, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35334262

RESUMO

The accumulation of microplastics (MPs) in terrestrial ecosystems can affect greenhouse gases (GHGs) production by changing soil structure and microbial functions. In this study, microcosm experiments were conducted to investigate the impact of polyethylene (PE) MP addition on soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions from paddy soils and their associated microbial functional genes. Methane was not considered due to the negligible emissions throughout the incubation. The amendment of both virgin and aged PE MPs did not significantly (p > 0.05) affect soil CO2 emissions, but significantly (p < 0.05) increased the abundances of microbial functional genes encoding enzymes involved in hemicellulose (abfA) and lignin (mnp) decomposition, indicating plastic particle has potential to stimulate soil organic carbon decomposition. The presence of PE MP significantly increased N2O emissions by 3.7-fold, which was probably due to PE MP increased the abundances of nirS gene involved in nitrite reductase. In addition, compared with virgin PE MP treatment, artificially aged PE MP did not significantly (p > 0.05) influence soil CO2 and N2O emissions. Our results provide evidence that PE MP likely cause a high risk of N2O emission from paddy soils, this factor should be considered in future estimates of GHGs emissions from rice fields.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Carbono , Dióxido de Carbono/análise , Ecossistema , Metano/análise , Microplásticos , Óxido Nitroso , Plásticos , Polietileno , Solo/química
8.
J Hazard Mater ; 438: 129547, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35999743

RESUMO

Microplastics can perturb microbial nutrient-mining strategies. However, the mechanism by which microplastics affect the resource-acquisition strategies of crops in agricultural systems remains unknown. The nutrient-acquisition potential of crops and microbes was investigated under treatments with two common microplastics (polyethylene [PE] and polyvinyl chloride [PVC]) at 0%, 1%, and 5% (w/w). Different root resource-acquisition strategies disturbed microbial nutrient turnover in the rhizosphere in response to microplastic addition. Specifically, the ß-1,4-glucosidase (BG) hotspot expanded, whereas the rhizosphere expansion of BG activity decreased. A decrease of less than PE1% (w/w) and an expansion of less than PE5% (w/w) in the 1,4-N-acetyl-glucosaminidase (NAG) hotspot with wider rhizosphere expansion of NAG activity indicated that higher doses of PE allow roots to uptake additional N. The phosphomonoesterase (PHOS) hotspot decreased in PE1% (w/w) and expanded in PE5% (w/w), but rhizosphere expansion did not change under PE treatments. However, both NAG and PHOS hotspots expanded with decreasing rhizosphere expansion under PVC treatments, indicating that PVC limits the utilization of available N and P, forcing the crop to obtain nutrients from the narrow root zone. These results indicate that adding PE microplastics increases the demand for and consumption of NH4+-N and NO3--N by wheat.


Assuntos
Microplásticos , Solo , Produtos Agrícolas , Nutrientes , Plásticos , Cloreto de Polivinila , Rizosfera , Microbiologia do Solo , Triticum
9.
J Hazard Mater ; 431: 128589, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247738

RESUMO

Microplastics (MPs) can alter microbial communities and carbon (C) cycling in agricultural soils. However, the mechanism by which MPs affect the decomposition of microbe-driven soil organic matter remains unknown. We investigated the bacterial community succession and temporal turnover during soil organic matter decomposition in MP-amended paddy soils (none, low [0.01% w/w], or high [1% w/w]). We observed that MPs reduced the CO2 efflux rate on day 3 and subsequently promoted it on day 15 of incubation. This increased CO2 emission in MP-amended soil may be related to (i) enhanced hydrolase enzyme activities or; (ii) shifts in the Shannon diversity, positive group interactions, and temporal turnover rates (from 0.018 to 0.040). CO2 efflux was positively correlated (r > 0.8, p < 0.01) with Ruminiclostridium_1, Mobilitalea, Eubacterium xylanophilum, Sporomusa, Anaerobacteriu, Papillibacter, Syntrophomonadaceae, and Ruminococcaceae_UCG_013 abundance in soil with high MPs, indicating that these genera play important roles in soil organic C mineralization. These results demonstrate how microorganisms adapt to MPs and thus influence the C cycle in MP-polluted paddy ecosystems.


Assuntos
Microbiota , Solo , Dióxido de Carbono , Microplásticos , Plásticos , Microbiologia do Solo
10.
Ying Yong Sheng Tai Xue Bao ; 26(1): 155-60, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-25985666

RESUMO

A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.


Assuntos
Agricultura/métodos , Dióxido de Carbono/análise , Gossypium , Solo/química , Plásticos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA