Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(34): 15786-15792, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35976081

RESUMO

Many biosensing methods rely on signals produced by enzyme-catalyzed reactions and efficient methods to detect and record this activity. Herein, we report a wireless lateral flow device and demonstrate the conversion of oxidase reactions to changes in the resonance of radio frequency identification (RFID) circuits. The detection is triggered by polyoxometalate-catalyzed oxidative doping of polypyrrole (pPy) when exposed to oxidase-generated H2O2. We have integrated this transduction and RFID capability into a lateral flow device to create a low-cost, rapid, and portable method for quantitative biological signal detection. We further report a new method for creating functional coatings from pPy core-shell colloidal particles bioconjugated for streptavidin-biotin recognition with glucose oxidase or pyruvate oxidase. The biofunctionalized pPy particles coalesce on the nitrocellulose membrane to produce a chemiresistive band. Glucose or pyruvate solutions result in formation of H2O2 at the pPy bands, functionalized with the respective oxidase, to produce conductivity enhancements exceeding 7·105%. Placing the pPy band in the RFID circuit converts the resistivity response to a change of RF resonance. The enzymatic response of glucose oxidase is recorded within 30 min with as low as 0.6 mM of glucose using this lateral flow device. Pyruvate is also shown to produce large responses. The oxidase enzymes/pPy transduction establishes a resistivity-based platform for the construction of a new family of lateral flow devices capable of detecting and quantifying biological targets.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Ânions , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas , Glucose , Peróxido de Hidrogênio , Polieletrólitos , Polímeros , Pirróis , Piruvatos
2.
J Am Chem Soc ; 143(47): 19809-19815, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793165

RESUMO

N-Nitrosamines are found in food, drugs, air, water, and soil. They pose a significant risk to human health because of their carcinogenicity; consequently, materials that can be used to selectively and sensitively detect nitrosamines are needed. In this work, we designed and synthesized two polymers bearing calix[4]arene or 4-tert-butylcalix[4]arene tungsten-imido complexes (PCalixH and PCalixtBu) as N-nitrosodimethylamine (NDMA) receptors. The interaction between metallocalix[4]arene monomers/polymers and NDMA was confirmed by 1H NMR and IR spectroscopy. Single-crystal X-ray analysis further revealed that the host-guest interaction is based on binding of the terminal oxygen of NDMA to tungsten within the calixarene cavity. Gravimetric detection of NDMA was performed on a quartz crystal microbalance (QCM) in air. Both polymers show responses to NDMA, with PCalixtBu exhibiting a low theoretical limit of detection of 5 ppb for NDMA. The sensor also shows high selectivity toward NDMA and moderate humidity tolerance. This work provides a sensitive sensor for detection of NDMA and also offers a class of new, selective, and efficient NDMA receptors for the future design of NDMA sensors and NDMA extraction materials.


Assuntos
Calixarenos/química , Complexos de Coordenação/química , Nitrosaminas/análise , Polímeros/química , Receptores Artificiais/química , Calixarenos/síntese química , Complexos de Coordenação/síntese química , Limite de Detecção , Polímeros/síntese química , Técnicas de Microbalança de Cristal de Quartzo , Receptores Artificiais/síntese química , Tungstênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA