Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 206: 162-179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37380044

RESUMO

Retinal ischemia-reperfusion (RIR) injury remains a major challenge that is detrimental to retinal cell survival in a variety of ocular diseases. However, current clinical treatments focus on a single pathological mechanism, making them unable to provide comprehensive retinal protection. A variety of natural products including ginsenoside Rg3 (Rg3) exhibit potent antioxidant and anti-inflammatory activities. Unfortunately, the hydrophobicity of Rg3 and the presence of various intraocular barriers limit its effective application in clinical settings. Hyaluronic acid (HA)- specifically binds to cell surface receptors, CD44, which is widely expressed in retinal pigment epithelial cells and M1-type macrophage. Here, we developed HA-decorated liposomes loaded with Rg3, termed Rg3@HA-Lips, to protect against retinal damage caused by RIR injury. Treatment with Rg3@HA-Lips significantly inhibited the oxidative stress induced by RIR injury. In addition, Rg3@HA-Lips promoted the transition of M1-type macrophage to the M2 type, ultimately reversing the pro-inflammatory microenvironment. The mechanism of Rg3@HA-Lips was further investigated and found that they can regulateSIRT/FOXO3a, NF-κB and STAT3 signaling pathways. Together with as well demonstrated good safety profiles, this CD44-targeted platform loaded with a natural product alleviates RIR injury by modulating the retinal microenvironment and present a potential clinical treatment strategy.


Assuntos
Microglia , Traumatismo por Reperfusão , Humanos , Lipossomos/farmacologia , Estresse Oxidativo , Macrófagos , Traumatismo por Reperfusão/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA