Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 113: 110956, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487378

RESUMO

A thermo-responsive injectable bioactive glass (BAG) that has the ability to set at body temperature was prepared using pluronic F127 and hydroxypropyl methylcellulose as the carrier. The injectable composite has the advantage to fill irregular shape implantation sites and quick setting at body temperature. The structural and morphological analysis of injectable BAG before and after setting was done by using Fourier Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscope (SEM). The effect of an ultrasonic scaler for a quick setting of injectable BAG was also investigated. The ultrasonic scaler sets the BAG formulation three-folds faster than at body temperature and homogenized the dispersion. The in vitro bio-adhesion was studied in the bovine tooth in both artificial saliva and deionized water for periodic time intervals, i.e., day 7, 30, 90, and 180, which confirmed the apatite layer formation. The mineral density analysis was used to differentiate the newly formed apatite with tooth apatite. In the MTT assay, the experimental material showed continuous proliferation and cell growth. This indicated that injectable hydrogel promoted cell growth, facilitated proliferation, and had no cytotoxic effect. The SEM and micro-CT results (performed after in vitro bioactivity testing) showed that the injectable BAG had the ability to regenerate dentin, hence this material has the potential to be used for dental and biomedical applications including tooth and bone regeneration in minimally invasive procedures in future.


Assuntos
Cerâmica/química , Implantes Dentários , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cerâmica/farmacologia , Dentina/química , Dentina/patologia , Vidro/química , Camundongos , Nanopartículas/química , Saliva Artificial/química
2.
Mater Sci Eng C Mater Biol Appl ; 103: 109812, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349482

RESUMO

A novel tri-layered, functionally-graded chitosan membrane (FGM) with bioactive glass gradient (50%, 25%, and 0% wt.) was developed by lyophilization. A step-wise grading of chitosan, bioactive glass (BG), and Pluronic F127 was introduced into the membrane in which each layer has separate surface functions that play a role of guided tissue regeneration (GTR) membranes. The lower layer was designed to replicate alveolar bone and contains 50%wt. BG, the middle layer contains 25%wt. BG, while the upper layer was non-porous without BG and it did not support cell growth. Scanning Electron Microscopy (SEM) revealed that the lower FGM surface possessed a porous structure with embedded BG particles, while the upper surface was non-porous with interconnected architecture. The contact angle measurement confirmed that the surface with BG was hydrophilic (≈00), while the opposite surface was hydrophobic (910 ±â€¯3.840). Both osteoblast and fibroblast cells have maximum adhesion at contact angle <80°. Alamar blue assay revealed the biocompatibility of the MC3T3-E1 mouse pre-osteoblasts cells with these membranes in vitro. The cells attachment and proliferation was seen for lower surface, while no cells adhesion was observed for the upper layer. Additionally, the interaction of the tissue with these tri-layered membranes was also investigated in vivo. Hematoxylin and eosin staining revealed the biocompatible nature of these membranes. Altogether, these results indicated that due to the biocompatible nature of these membranes, they will be a good carrier of in vivo implantation.


Assuntos
Implantes Dentários , Regeneração Tecidual Guiada/instrumentação , Membranas Artificiais , Osteoblastos/citologia , Animais , Materiais Biocompatíveis/química , Adesão Celular , Quitosana/química , Vidro/química , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Nanopartículas/química , Poloxâmero/química , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Mater Sci Eng C Mater Biol Appl ; 101: 438-447, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029339

RESUMO

With an increase in the demand for skin regeneration products, there is a noticeable increase in developing materials that encourage, wound healing and skin regeneration. It has been reported that antioxidants play an important role in anti-inflammatory reactions, cellular proliferation and remodeling phase of wound healing. While consideration all these factors, a novel α-tocopherol acetate (vitamin E) (VE) loaded bi-layered electrospun membrane, based on lower polycaprolactone (PCL) layer and upper polylactic acid (PLA) layer, was fabricated through electrospinning. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), in-vitro degradation studies, swelling studies and VE release studies were performed to evaluate structural, physical and in-vitro behavior of membranes. Biological properties of membranes were evaluated through cell proliferation assay, cell adhesion studies, live/dead cell assay and CAM assay. SEM images showed that the average diameter of nanofibers ranged from 1 to 6 µm, while addition of VE changed the diameter and morphology of fibers. Bi-layered membranes showed significant swelling behavior through water uptake, membranes loaded with 30% VE showed 8.7% and 6.8% degradation in lysozyme and H2O2 respectively. 20% and 30% VE loaded membranes followed Korsmeyer-Peppas and first order drug release kinetics followed by non-fickian drug release kinetics. Membranes showed non-toxic behavior and supported cell proliferation via alamar blue assay, cell adhesion via SEM, cell viability via live/dead assay and wound healing by scratch assay. CAM assay showed that membranes having VE supported angiogenesis and showed significant formation of blood vessels making it suitable for skin regeneration and wound healing. Results showed that large surface area of nanofibers, porous structure and biocompatible nature are suitable for targeted clinical applications.


Assuntos
Pele/citologia , alfa-Tocoferol/química , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , alfa-Tocoferol/farmacologia
4.
J Biomater Appl ; 33(7): 967-978, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30509121

RESUMO

Development of a guided occlusive biodegradable membrane with controlled morphology in order to restrict the ingrowth of epithelial cells is still a challenge in dental tissue engineering. A bilayer membrane with a non-porous upper layer (polyurethane) and porous lower layer (polycaprolactone and bioactive glass composite) with thermoelastic properties to sustain surgery treatment was developed by lyophilization. Morphology, porosity, and layers attachment were controlled by using the multi-solvent system. In vitro and in vivo biocompatibility, cell attachment, and cell proliferation were analyzed by immunohistochemistry and histology. The cell proliferation rate and cell attachment results showed good biocompatibility of both surfaces, though cell metabolic activity was better on the polycaprolactone-bioactive glass surface. Furthermore, the cells were viable, adhered, and proliferated well on the lower porous bioactive surface, while non-porous polyurethane surface demonstrated low cell attachment, which was deliberately designed and a pre-requisite for guided tissue regeneration/guided bone regeneration membranes. In addition, in vivo studies performed in a rat model for six weeks revealed good compatibility of membranes. Histological analysis (staining with hematoxylin and eosin) indicated no signs of inflammation or accumulation of host immune cells. These results suggested that the fabricated biocompatible bilayer membrane has the potential for use in periodontal tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Regeneração Tecidual Guiada Periodontal , Membranas Artificiais , Poliésteres/química , Poliuretanos/química , Animais , Regeneração Óssea , Linhagem Celular Tumoral , Masculino , Porosidade , Ratos , Alicerces Teciduais/química
5.
Mater Sci Eng C Mater Biol Appl ; 82: 102-109, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025638

RESUMO

In this study, an effective, biocompatible and biodegradable co-polymer comprising of chitosan (CS) and polyvinyl alcohol (PVA) hydrogels, chemically crosslinked and impregnated with doxazocin, is reported. The chemical structural properties of the hydrogels were evaluated by Fourier Transform Infrared spectroscopy (FTIR) and physical properties were analysed by scanning electron microscopy (SEM). The swelling behaviour is an important parameter for drug release mechanism and was investigated to find out the solution absorption capacity of the synthesized hydrogels. MTT assay revealed that doxazocin loaded hydrogels significantly hindered the cell viability. Flow cytometry analysis was performed to analyse the effect of 8CLH and 4CLH on regulation of cell cycle. Moreover, in vivo anti-cancer potential of synthesized hydrogels was assessed by CAM Assay. Results displayed that 8CLH with 1mg/ml of doxazocin had prominently decreased the angiogenesis and significantly increased the number of cells in G1 phase of cell cycle. These results declared that 8CLH will be a good addition among hydrogels used for treatment of cancer by onsite delivery of drug.


Assuntos
Quitosana/química , Hidrogéis/química , Neoplasias do Colo do Útero/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Doxazossina/química , Doxazossina/farmacologia , Liberação Controlada de Fármacos , Feminino , Citometria de Fluxo , Fase G1/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Álcool de Polivinil/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
J Biomater Appl ; 31(4): 582-593, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27189757

RESUMO

There is a need to develop pro-angiogenic biomaterials to promote wound healing and to assist in regenerative medicine. To this end, various growth factors have been exploited which have the potential to promote angiogenesis. However, these are generally expensive and labile which limits their effectiveness. An alternative approach is to immobilize heparin onto biocompatible degradable hydrogels. The heparin in turn will then bind endogenous proangiogenic growth factors to induce formation of new blood vessels.In this study, we continue our development of hydrogels for wound healing purposes by exploring covalently cross-linking chitosan and polyvinyl alcohol hydrogels using triethyl orthoformate. Two concentrations of triethyl orthoformate (4 and 16%) were compared for their effects on the structure of hydrogels - their swelling, pore size, and rate of degradation and for their ability to support the growth of cells and for their heparin-binding capacity and their effects on angiogenesis in a chick chorioallantoic membrane assay.Hydrogels formed with 4 or 16% both triethyl orthoformate cross-linker were equally cyto-compatible. Hydrogels formed with 4% triethyl orthoformate absorbed slightly more water than those made with 16% triethyl orthoformate and broke down slightly faster than non-cross-linked hydrogels. When soaked in heparin the hydrogel formed with 16% triethyl orthoformate showed more blood vessel formation in the CAM assay than that formed with 4% triethyl orthoformate.


Assuntos
Implantes Absorvíveis , Vasos Sanguíneos/crescimento & desenvolvimento , Quitosana/química , Heparina/química , Neovascularização Fisiológica/fisiologia , Álcool de Polivinil/química , Alicerces Teciduais , Adsorção , Animais , Vasos Sanguíneos/citologia , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/fisiologia , Reagentes de Ligações Cruzadas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Formiatos/química , Hidrogéis/síntese química , Teste de Materiais , Ligação Proteica , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
7.
J Mech Behav Biomed Mater ; 61: 617-626, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27068802

RESUMO

In this manuscript for the first time calcium hydroxide (Ca(OH)2) has been used for preparation of bioactive glass (BG-2) by co-precipitation method and compared with glass prepared using calcium nitrate tetrahydrate Ca(NO3)2·4H2O (BG-1), which is a conventional source of calcium. The new source positively affected physical, biological and mechanical properties of BG-2. The glasses were characterized by Fourier transform infrared (FTIR), X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC), BET surface area analysis and Knoop hardness. The results showed that BG-2 possessed relatively larger surface properties (100m(2)g(-1) surface area) as compared to BG-1 (78m(2)g(-1)), spherical morphology and crystalline phases (wollastonite and apatite) after sintering at lower than conventional temperature. These properties contribute critical role in both mechanical and biological properties of glasses. The Knoop hardness measurements revealed that BG-2 possessed much better hardness (0.43±0.06GPa at 680°C and 2.16±0.46GPa at 980°C) than BG-1 (0.24±0.01 at 680°C and 0.57±0.07GPA at 980°C) under same conditions. Alamar blue Assay and confocal microscopy revealed that BG-2 exhibited better attachment and proliferation of MG63 cells. Based on the improved biological properties of BG-2 as a consequent of novel calcium source selection, BG-2 is proposed as a bioactive ceramic for hard tissue repair and regeneration applications.


Assuntos
Materiais Biocompatíveis , Hidróxido de Cálcio/química , Vidro/química , Cerâmica , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA