Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Langmuir ; 40(4): 2005-2014, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227800

RESUMO

Nowadays, natural materials as smart building blocks for assembling functional materials have aroused extensive interest in the scientific community. Proteins and polyphenols are typical natural building blocks that are widely used. On the one hand, proteins are one of the most versatile classes of biomolecules, serving as catalysts, signaling molecules, transporters, receptors, scaffolds that maintain the integrity of cell and tissue, and more. On the other hand, the facile adhesion of naturally abundant polyphenols with other substances and their potential biomedical applications have been highly attractive for functional biomaterials fabrication. Additionally, there are a variety of interactions between the proteins and polyphenols, mainly hydrogen bonding, hydrophobic, and ionic interactions. These reversible dynamic interactions enable proteins and polyphenols to form stable protein-polyphenol assemblies and maintain their inherent structures and biological activities in the assemblies. Therefore, protein-polyphenol assemblies can be applied to design a variety of advanced functional materials for biomedical applications. Herein, recent progress in protein-polyphenol particles, capsules, coatings, and hydrogels is summarized, the preparation and application of these assemblies are introduced in detail, and the future of the field is prospected.


Assuntos
Polifenóis , Proteínas , Polifenóis/química , Proteínas/química , Materiais Biocompatíveis/química , Hidrogéis/química , Ligação de Hidrogênio
2.
Mol Pharm ; 16(7): 2902-2911, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31184906

RESUMO

The physical properties of nanoparticles (NPs), such as size, surface chemistry, elasticity, and shape, have exerted a profound influence on tumor penetration. However, the effect of shape on cellular uptake and tumor penetration is still unclear because of the different chemical compositions and shapes of tested particles and the use of inapposite cellular models. To discover the effect of NP shapes on cellular uptake and tumor penetration and bridge the gap between models in vivo and in vitro, elongated polystyrene (PS) NPs with a fixed volume, an identical chemical composition, and the same zeta potential, but with different aspect ratios (ARs), were generated. The physical properties, cellular uptake, tumor penetration, and corresponding mechanisms of these NPs were thoroughly investigated. We discovered that the elongated PS particles with higher ARs had lower uptake rates in the 2-dimensional cell monolayer culture model in vitro, but they showed optimal ARs in the evaluated three-dimensional spheroid model. Although the elongated PS particles had a similar tumor penetration mechanism (mainly through extracellular pathways), the percentage of penetration using these mechanisms was strongly dependent on the ARs. As an alternative model for studies in vivo, spheroids were used instead of the cell monolayer for the development of drug delivery systems. In addition, the physicochemical properties of NPs must be delicately balanced and adjusted to achieve the best therapeutic outcomes.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polipropilenos/química , Esferoides Celulares/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Líquido Extracelular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Poliestirenos/química , Microambiente Tumoral/efeitos dos fármacos
3.
Langmuir ; 35(20): 6752-6761, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31030514

RESUMO

There is a great demand worldwide for bone-related implant materials. The drawbacks of chronic infections and poor bone healing of current implant materials have limited their clinical applications. Functionalizing the implant surfaces with antibacterial and osteogenic films on implant materials provides new opportunities for fabricating novel implant materials. In the present study, an ultrathin (GO/Lys)8 film of several tens of nanometers was fabricated using a layer-by-layer (LBL) technique with alternative deposition of graphene oxide (GO) and lysozyme (Lys). The deposition of the (GO/Lys) n film exhibited a successive growth as supported by ellipsometry, UV-vis, and Fourier transform infrared data, and the physical properties (morphology, roughness, and stiffness) of this film were characterized with an atomic force microscope. The ultrathin films exhibited a great effect on bacterium sterilization of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and enhanced osteogenic differentiation efficiency, showing the potential application in bone implant coatings. We believe that this LBL assembling strategy will pave the way for fabricating dual-functional surfaces and guide the design of the implanted surfaces in the future.


Assuntos
Antibacterianos , Polpa Dentária/metabolismo , Escherichia coli/crescimento & desenvolvimento , Grafite , Membranas Artificiais , Osteogênese/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Células-Tronco/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Polpa Dentária/citologia , Grafite/química , Grafite/farmacologia , Humanos , Muramidase/química , Muramidase/farmacologia , Células-Tronco/citologia
4.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817148

RESUMO

Polymerization mother liquid (PML) is one of the main sources of wastewater in the chlor-alkali industry. The effective degradation of the PML produced in PVC polymerization using three or five ozone reactors in tandem was designed with a focus on improving the ozonation efficiency. The ozonation efficiency of the tandem reactors for the degradation of PML, along with the effect of ozone concentration, the number of reactors utilized in series, and the reaction time on the chemical oxygen demand (COD) removal were investigated in detail. The results showed that the COD removal increased as the ozone concentration was increased from 10.6 to 60 mg·L-1, achieving 66.4% COD removal at ozone concentration of 80.6 mg·L-1. However, when the ozone concentration was increased from 60 mg·L-1 to 80 mg·L-1, the COD removal only increased very little. The COD decreased with increasing ozone concentration. During the initial degradation period, the degradation rate was the highest at both low and high ozone concentrations. The degradation rate decreased with reaction time. The rate at a low ozone concentration decreased more significantly than at high ozone concentration. Although high ozone concentration is desirable for COD removal and degradation rate, the utilization efficiency of ozone decreased with increasing ozone concentration. The ozone utilization efficiency of the five-reactor device was three times higher than that of three tandem reactors, demonstrating that ozonation utilization efficiency can be improved by increasing the number of tandem reactors. Ozonation in tandem reactors is a promising approach for PML treatment.


Assuntos
Ozônio/química , Polimerização , Cloreto de Polivinila/química , Purificação da Água/instrumentação , Purificação da Água/métodos , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Modelos Teóricos , Oxirredução , Fatores de Tempo
5.
Langmuir ; 32(7): 1808-17, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26795271

RESUMO

Because of its outstanding osteo-conductive property, a calcium phosphate (CaP) coating has been used as an implant coating for bone tissue engineering. Nevertheless, the issues, such as harsh fabrication conditions, long-term stability and biocompatibility, and the requirement for expensive instruments, still exist in current coating techniques. To address these issues, the CaP coatings doped with collagen (CaP-Col) were in situ generated on polyelectrolyte multilayers (PEMs) by incubating PEMs in a mixture of the collagen, phosphate, and calcium ions. The resulting coatings have controllable physical properties (chemical composition, crystallinity, and roughness) and good stability before and after incubation with cell culture medium. We also found that both the cellular viability and osteogenesis of mesenchymal stem cells (MSCs) were closely related to the roughness of PEMs/CaP-Col, one of the easily ignored physical factors in current coating designs but very critical. The existed roughness window (between 18 ± 1.2 and 187 ± 7.3 nm) suitable for MSC proliferation on PEMs/CaP-Col coating and the optimal roughness (∼98 ± 3.5 nm) for MSC osteogenesis further demonstrated that the roughness was a critical factor for bone formation. Therefore, we envision that our exploration of the effects of surface roughness on MSC behaviors would provide better guidance for the future design of material coating and eventual medical success.


Assuntos
Fosfatos de Cálcio/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Colágeno/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Minerais/metabolismo , Osteogênese/efeitos dos fármacos , Fosfatos de Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/metabolismo , Propriedades de Superfície , Engenharia Tecidual
6.
Langmuir ; 31(27): 7601-8, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26114616

RESUMO

Polyelectrolyte capsules (PECs) are a promising delivery system that has the ability to carry a large payload of a variety of cargoes. Controlling PEC properties is critical to understanding and tuning their cellular uptake efficiency, kinetics, and mechanism as well as their biodistribution in the body. The lack of a method to independently engineer PEC size, shape, and chemistry impedes both basic understanding of how physicochemical parameters affect PEC behavior in drug delivery and other applications, and the ability to optimize parameters for best function. Here, we report the successful fabrication of PECs having constant surface chemistry with independently controlled size and shape by combining soft organic templates created by the particle stretching method and a modified layer-by-layer (LBL) deposition process. Changing the template dispersion solution during LBL deposition from water to ethanol allowed us to overcome previous issues with organic templates, such as aggregation and template removal. These results will contribute not only to the basic study of the role of capsule shape and size on its function but also to the optimization of capsule properties for drug or imaging carriers, sensors, reactors, and other applications.


Assuntos
Polímeros/química , Eletrólitos/química , Etanol/química , Tamanho da Partícula , Propriedades de Superfície
7.
Biomacromolecules ; 16(11): 3466-72, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26390383

RESUMO

Electroactive nanofibers were fabricated by in situ polymerization of aniline on the surface of tobacco mosaic virus (TMV) using sodium poly(styrenesulfonate) (PSS) as dopant. These electroactive TMV/PANi/PSS nanofibers were employed to support growth of neuronal cells, resulting in augmentation of the length of neurites. In addition, the percentage of cells with neurites was increased in comparison to cells cultured on TMV-derived nonconductive nanofibers. The TMV-based electroactive nanofibers could be aligned in capillaries that could guide the outgrowth direction of neurites, increase the percentage of cells with neurites, and lead to a bipolar cellular morphology. Our results demonstrate that the electroactivity and topographical cues provided by TMV/PANi/PSS nanofibers can synergistically stimulate neural cells differentiation and neurites outgrowth, which make it a promising scaffolding material for neural tissue engineering.


Assuntos
Nanofibras/química , Neuritos/efeitos dos fármacos , Engenharia Tecidual , Alicerces Teciduais/química , Vírus do Mosaico do Tabaco , Compostos de Anilina/química , Animais , Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Tecido Nervoso/química , Tecido Nervoso/citologia , Tecido Nervoso/efeitos dos fármacos , Neuritos/metabolismo , Células PC12 , Poliestirenos/química , Ratos
8.
Chem Commun (Camb) ; 60(52): 6683-6686, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860957

RESUMO

This study introduces boronic ester-based ROS-responsive amphiphilic copolymers for antioxidant drug delivery. Tuning the hydrophobic/hydrophilic balance optimized the size, curcumin encapsulation, ROS-triggered release, cellular uptake, and intracellular ROS scavenging. The lead P1b formulation self-assembled into stable 10 nm micelles enabling rapid ROS-triggered curcumin release and preferential cellular internalization. P1b eliminated over 90% of pathogenic intracellular ROS within 10 minutes, demonstrating a rapid antioxidant therapy.


Assuntos
Ácidos Borônicos , Curcumina , Ésteres , Polímeros , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Ésteres/química , Ésteres/farmacologia , Humanos , Ácidos Borônicos/química , Curcumina/química , Curcumina/farmacologia , Polímeros/química , Micelas , Interações Hidrofóbicas e Hidrofílicas , Antioxidantes/química , Antioxidantes/farmacologia , Portadores de Fármacos/química , Tensoativos/química , Tensoativos/síntese química , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular
9.
ACS Macro Lett ; 13(1): 58-64, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38153092

RESUMO

The development of drug delivery systems with real-time cargo release monitoring capabilities is imperative for optimizing nanomedicine performance. Herein, we report an innovative self-reporting drug delivery platform based on a ROS-responsive random copolymer (P1) capable of visualizing cargo release kinetics via the activation of an integrated fluorophore. P1 was synthesized by copolymerization of pinacol boronate, PEG, and naphthalimide monomers to impart ROS-sensitivity, hydrophilicity, and fluorescence signaling, respectively. Detailed characterization verified that P1 self-assembles into 11 nm micelles with 10 µg mL-1 CMC and can encapsulate hydrophobic curcumin with 79% efficiency. Fluorescence assays demonstrated H2O2-triggered disassembly and curcumin release with concurrent polymer fluorescence turn-on. Both in vitro and in vivo studies validated the real-time visualization of drug release and ROS scavenging, as well as the therapeutic effect on osteoarthritis (OA). Overall, this nanotheranostic polymeric micelle system enables quantitative monitoring of drug release kinetics for enhanced treatment optimization across oxidative stress-related diseases.


Assuntos
Curcumina , Osteoartrite , Humanos , Polímeros , Espécies Reativas de Oxigênio , Curcumina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Autorrelato , Peróxido de Hidrogênio , Sistemas de Liberação de Medicamentos , Micelas , Osteoartrite/tratamento farmacológico
10.
Adv Healthc Mater ; 13(9): e2302286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38056013

RESUMO

Spinal cord injury (SCI) commonly induces nerve damage and nerve cell degeneration. In this work, a novel dental pulp stem cells (DPSCs) encapsulated thermoresponsive injectable hydrogel with sustained hydrogen sulfide (H2S) delivery is demonstrated for SCI repair. For controlled and sustained H2S gas therapy, a clinically tested H2S donor (JK) loaded octysilane functionalized mesoporous silica nanoparticles (OMSNs) are incorporated into the thermosensitive hydrogel made from Pluronic F127 (PF-127). The JK-loaded functionalized MSNs (OMSF@JK) promote preferential M2-like polarization of macrophages and neuronal differentiation of DPSCs in vitro. OMSF@JK incorporated PF-127 injectable hydrogel (PF-OMSF@JK) has a soft consistency similar to that of the human spinal cord and thus, shows a high cytocompatibility with DPSCs. The cross-sectional micromorphology of the hydrogel shows a continuous porous structure. Last, the PF-OMSF@JK composite hydrogel considerably improves the in vivo SCI regeneration in Sprague-Dawley rats through a reduction in inflammation and neuronal differentiation of the incorporated stem cells as confirmed using western blotting and immunohistochemistry. The highly encouraging in vivo results prove that this novel design on hydrogel is a promising therapy for SCI regeneration with the potential for clinical translation.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Hidrogéis/química , Estudos Transversais , Polpa Dentária , Traumatismos da Medula Espinal/tratamento farmacológico , Células-Tronco , Medula Espinal
11.
Langmuir ; 29(41): 12777-84, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24044529

RESUMO

Rodlike tobacco mosaic virus (TMV) has been found to assemble into superlattices in aqueous solution using the polymer methylcellulose to induce depletion and free volume entropy-based attractive forces. Both transmission electron microscopy and small-angle X-ray scattering show that the superlattices form in both semidilute and concentrated regimes of polymer, where the free volume entropy and the depletion interaction are the dominant driving force, respectively. The superlattices are NaCl and temperature responsive. The rigidity of the rodlike nanoparticles also plays an important role for the formation of superlattices through the free volume entropy mechanism. Compared to the rigid TMV particle, flexible bacteriophage M13 particles are only responsive to the depletion force and thus only assemble in highly concentrated polymer solution, where depletion interaction is dominant.


Assuntos
Metilcelulose/química , Polímeros/química , Vírus do Mosaico do Tabaco/química , Entropia , Nanopartículas/química , Tamanho da Partícula , Cloreto de Sódio/química , Soluções , Propriedades de Superfície , Temperatura , Vírus do Mosaico do Tabaco/ultraestrutura , Água/química
12.
ACS Macro Lett ; 12(5): 639-645, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37129207

RESUMO

Due to the high reactivity of reactive oxygen species (ROS), it is essential to sweep them away in time. In this study, ClO--responsible amphiphilic brush polymers were prepared by free radical polymerization using two monomers consisting of polyethylene glycol as the hydrophilic part, and an alkyl chain connected by hydrazone as the hydrophobic part. The macromolecules assemble into particles with nanoscaled dimensions in a neutral buffer, which ensures quick cellular internalization. The polymer has a low critical micellization concentration and can encapsulate hydrophobic drug molecules up to 19% wt. The micelles formed by the polymer disassemble in a ClO--rich environment and release 80% of their cargo within 2 h, which possesses a faster release rate compared to the previous systems. The relatively small size and the quick response of hydrazone toward ClO- ensure a quick uptake and elimination of ROS in vitro and in vivo.


Assuntos
Polietilenoglicóis , Polímeros , Polímeros/química , Espécies Reativas de Oxigênio , Liberação Controlada de Fármacos , Polietilenoglicóis/química , Endocitose
13.
Mater Today Bio ; 23: 100848, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38033370

RESUMO

Osseointegration is an important indicator of implant success. This process can be improved by coating modified bioactive molecules with multiple functions on the surface of implants. Herein, a simple multifunctional coating that could effectively improve osseointegration was prepared through layer-by-layer self-assembly of cationic amino acids and tannic acid (TA), a negatively charged molecule. Osteogenic growth peptide (OGP) and the arginine-glycine-aspartic acid (RGD) functional polypeptides were coupled with Lys6 (K6), the two polypeptides then self-assembled with TA layer by layer to form a composite film, (TA-OGP@RGD)n. The surface morphology and biomechanical properties of the coating were analyzed in gas and liquid phases, and the deposition process and kinetics of the two peptides onto TA were monitored using a quartz crystal microbalance. In addition, the feeding consistency and adsorption ratios of the two peptides were explored by using fluorescence visualization and quantification. The (TA-OGP@RGD)n composite membrane mediated the early migration and adhesion of cells and significantly promoted osteogenic differentiation and mineralization of the extracellular matrix in vitro. Additionally, the bifunctional peptide exhibited excellent osteogenesis and osseointegration owing to the synergistic effect of the OGP and RGD peptides in vivo. Simultaneously, the (TA-OGP@RGD)n membrane regulated the balance of reactive oxygen species in the cell growth environment, thereby influencing the complex biological process of osseointegration. Thus, the results of this study provide a novel perspective for constructing multifunctional coatings for implants and has considerable application potential in orthopedics and dentistry.

14.
Colloids Surf B Biointerfaces ; 212: 112319, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35051792

RESUMO

Limited osteointegration of orthopedic implants with surrounding tissues has been the leading issue until the failure of orthopedic implants in the long term, which could be induced by multiple factors, including infection, limited abilities for bone formation and remodeling, and an overstressed reactive oxygen species (ROS) environment around implants. To address this challenge, a multifunctional coating composed of tannic acid (TA), nanohydroxyapatite (nHA) and gelatin (Gel) was fabricated by a layer-by-layer (LBL) technique, into which TA, nHA, and Gel were integrated, and their respective functions were utilized to synergistically promote osteogenesis. The fabrication process of (TA@nHA/Gel)n coatings and related bio-multifunctionalities were thoroughly investigated by various techniques. We found that the (TA@nHA/Gel)n coatings showed strong antioxidant activity and accelerated cellular attachment in the early stage and proliferation in the long term, largely enhancing osteogenesis in vitro and promoting bone formation in vivo. We believe our findings will guide the design of orthopedic implants in the future, and the strategy developed here could pave the way for multifunctional orthopedic implant coating and protein-related coatings with various potential applications, including biosensors, catalysis, tissue engineering, and life science.


Assuntos
Antioxidantes , Osteogênese , Antioxidantes/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Gelatina , Próteses e Implantes , Taninos , Titânio
15.
Adv Sci (Weinh) ; 9(14): e2105223, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35274475

RESUMO

Pathogenic bacteria infection is a serious threat to human public health due to the high morbidity and mortality rates. Nano delivery system for delivering antibiotics provides an alternative option to improve the efficiency compared to conventional therapeutic agents. In addition to the drug loading capacity of nanocarriers, which is typically around 10%, further lowers the drug dose that pathological bacteria are exposed to. Moreover, nanocarriers that are not eliminated from the body may cause side effects. These limitations have motivated the development of self-delivery systems that are formed by the self-assembly of different therapeutic agents. In this study, a vehicle-free antimicrobial polymer polyhexamethylene biguanide (PHMB, with bactericidal and anti-biofilm functions) hybrid gold nanoparticle (Au NPs, with photothermal therapy (PTT)) platform (PHMB@Au NPs) is developed. This platform exhibits an excellent synergistic effect to enhance the photothermal bactericidal effect for Staphylococcus aureus under near-infrared irradiation. Furthermore, the results showed that PHMB@Au NPs inhibit the formation of biofilms, quickly remove bacteria to promote wound healing through PTT in infection model in vivo, and even mediate the transition of macrophages from M1 to M2 type, and accelerate tissue angiogenesis. PHMB@Au NPs will have promising value as highly effective antimicrobial agents for patient management.


Assuntos
Nanopartículas Metálicas , Infecções Estafilocócicas , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Ouro/farmacologia , Ouro/uso terapêutico , Humanos , Polímeros/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
16.
Adv Sci (Weinh) ; 9(12): e2105742, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187853

RESUMO

Repeatability and high adhesion toughness are usually contradictory for common polymer adhesives. Repeatability requires temporary interactions between the adhesive and the substrate, while high adhesion toughness is usually achieved by permanent bonding. Integrating these two features into one adhesive system is still a daunting challenge. Here, the development of a series of viscoelastic elastomers composed of a soft and hard segment is reported, which exhibit tough, instant, yet repeatable adhesion to a variety of soft and hard surfaces. Such a combination of mutually exclusive properties is attributed to the synergy of high mobility of polymer chains and massive viscoelastic dissipation of the elastomers around the interface. By optimizing the relaxation time and mechanical dissipation, the resulting adhesives can achieve a tough yet repeatable adhesion toughness above 2000 J m-2 , superior to the best-in-class commercial adhesives. Numerous acrylate monomers are proven applicable to the preparation of such adhesives, validating the universality of the fabrication method. The application of these elastomers as adhesive and protective layers in soft electronics by virtue of their universal and tough adhesion to various soft and hard substrates is also demonstrated.


Assuntos
Adesivos , Elastômeros , Adesivos/química , Elastômeros/química , Fenômenos Físicos , Polímeros/química
17.
Front Bioeng Biotechnol ; 9: 718255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350164

RESUMO

There is a substantial global market for orthopedic implants, but these implants still face the problem of a high failure rate in the short and long term after implantation due to the complex physiological conditions in the body. The use of multifunctional coatings on orthopedic implants has been proposed as an effective way to overcome a range of difficulties. Here, a multifunctional (TA@HA/Lys)n coating composed of tannic acid (TA), hydroxyapatite (HA), and lysozyme (Lys) was fabricated in a layer-by-layer (LBL) manner, where TA deposited onto HA firmly stuck Lys and HA together. The deposition of TA onto HA, the growth of (TA@HA/Lys)n, and multiple related biofunctionalities were thoroughly investigated. Our data demonstrated that such a hybrid coating displayed antibacterial and antioxidant effects, and also facilitated the rapid attachment of cells [both mouse embryo osteoblast precursor cells (MC3T3-E1) and dental pulp stem cells (DPSCs)] in the early stage and their proliferation over a long period. This accelerated osteogenesis in vitro and promoted bone formation in vivo. We believe that our findings and the developed strategy here could pave the way for multifunctional coatings not only on orthopedic implants, but also for additional applications in catalysts, sensors, tissue engineering, etc.

18.
Biomacromolecules ; 11(4): 1082-8, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20307097

RESUMO

Covalently attached, soft poly(vinyl alcohol) (PVA) hydrogel films containing silver particles were prepared on solid biodegradable poly(l-lactic acid) (PLLA) samples by a multistep procedure involving oxygen plasma treatment, UV-initiated graft polymerization, and chemical grafting methods. The modification steps were followed and verified using attenuated total reflection infrared spectroscopy and X-ray photoelectron spectroscopy. 2-Hydroxyethyl methacrylate (HEMA) was graft polymerized from the surface of oxygen plasma-treated PLLA film samples and the alcohol functionality in the grafted polyHEMA chains was oxidized using pyridinium dichromate to obtain an aldehyde-rich surface. PVA was then grafted onto this surface using acid catalysis (acetal formation). The "freeze/thaw method" was used to form a PVA hydrogel layer that incorporated the covalently grafted PVA chains in the physically cross-linked gel. This composite film (PLLA-PVA(gel)) was doped with silver ions, which were reduced to silver using NaBH(4). Scanning electron microscopy of cross sections of PLLA-PVA(gel) indicates robust attachment of the PVA hydrogel layer to the PLLA film. PLLA-PVA(gel/Ag(0)) film samples exhibit both antibacterial and reduced cell adhesion properties due to the antibacterial properties of silver nanoparticles and high water content, respectively. This method provides a route to mechanically sound biodegradable materials with tunable soft material surface properties. Potential applications in tissue engineering and biomedical devices are envisioned.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Ácido Láctico/química , Nanopartículas , Oxigênio/sangue , Polímeros/química , Álcool de Polivinil/química , Prata/química , Antibacterianos/farmacologia , Adesão Celular , Escherichia coli/efeitos dos fármacos , Células HeLa , Humanos , Poliésteres , Pseudópodes , Espectroscopia de Infravermelho com Transformada de Fourier
19.
ACS Appl Bio Mater ; 3(1): 673-684, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019412

RESUMO

Dental implants have great potential in the global market, around $3.7 billion in 2015, which will increase to $7 billion in 2023 with an annual increase rate of 8.2%. Incorporating antibacterial and osteogenic agents into implants is helpful to make the dental implants successful, which can be endowed by coatings. In recent years, graphene oxide (GO) and its composite materials have shown advances in the biomedical field. Lysozyme (Lys) and tannic acid (TA) are naturally derived, with promising antibacterial and osteogenic properties as well. In the present study, the strong antibacterial and enhanced osteogenic multilayer coating is fabricated using the facile and controllable layer by layer (LBL) technique to integrate GO, Lys, and TA. The thickness of coating exhibited a continuous growth with the deposited process as proved from UV-vis and ellipsometry data, and the physical properties of the coating, such as wettability, roughness, and stiffness are well characterized. The coatings exhibited the synergic effect on the killing bacteria, both Gram-negative bacteria and Gram-positive bacteria represented by E. coli and S. aureus, respectively, and enhancing osteogenesis of dental pulp stem cells (hDPSCs), showing the potential application on coatings of dental implants. Thus, the strategy applied here will inspire the design and development of dual functional surfaces for the success of implanted dental surface in future.

20.
Chem Commun (Camb) ; 55(14): 2058-2061, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30688964

RESUMO

It is of great interest to prepare osteogenic and antibacterial coatings for successful implants. Current coating techniques suffer from being time-consuming, substrate material or shape dependence, expensive equipment, environmental pollution, low stability, processes that are difficult to control, etc. Herein, inspired by mussels, we report a one-step and versatile method to fabricate a dual functional coating. The coating is finished in minutes independently of materials or dimensions of substrates. Thus, our coatings exhibit strong antibacterial ability against both Gram-positive bacteria S. aureus, and Gram-negative bacteria E. coli, support the proliferation of dental pulp stem cells (DPSCs), and are powerful for inducing osteogenic differentiation. The universality, facility, rapidness, and mildness of our coating process, which is also environmentally-friendly and cost-effective, points towards potential applications in bone or dental implants.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/síntese química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Bivalves , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Análise Custo-Benefício , Polpa Dentária/citologia , Humanos , Proteínas/química , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA