Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 121: 695-712, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33279710

RESUMO

The influence of amount of intermetallics on the degradation of as-extruded Mg-Nd alloys with different contents of Nd was investigated via immersion testing in DMEM+10% FBS under cell culture conditions and subsequent microstructural characterizations. It is found that the presence of intermetallic particles Mg41Nd5 affects the corrosion of Mg-Nd alloys in two conflicting ways. One is their negative role that their existence enhances the micro-galvanic corrosion. Another is their positive role. Their existence favours the formation of a continuous and compact corrosion layer. At the early stage of immersion, their negative role predominated. The degradation rate of Mg-Nd alloys monotonously increases with increasing the amount of intermetallics. Mg-5Nd alloy with maximum amount of intermetallics suffered from the most severe corrosion. With the immersion proceeding (≥7 days), then the positive role of these intermetallic particles Mg41Nd5 could not be neglected. Owing to the interaction between their positive and negative roles, at the later stage of immersion the corrosion rate of Mg-Nd alloys first increases with increasing the content of Nd, then reaches to the maximum at 2 wt. % Nd. With a further increase of Nd content, a decrease in corrosion rate occurs. The main corrosion products on the surfaces of Mg-Nd alloys include carbonates, calcium-phosphate, neodymium oxide and/or neodymium hydroxide. They are amorphous at the early stage of immersion. With the immersion proceeding, they are transformed to crystalline. The existence of undegradable Mg41Nd5 particles in the corrosion layer can enhance the crystallization of such amorphous corrosion products.


Assuntos
Ligas , Magnésio , Corrosão , Teste de Materiais
2.
Mater Sci Eng C Mater Biol Appl ; 98: 635-648, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813067

RESUMO

Titanium niobium alloys exhibit a lower stiffness compared to Ti6Al4V, the 'gold standard' for load-bearing bone implants. Thus, the critical mismatch in stiffness between the implant and adjacent bone tissue could be addressed with TiNb alloys and thereby reduce stress shielding, which can result in bone resorption and subsequent implant loosening; however, the cellular response on the specific material is crucial for sufficient osseointegration. We therefore hypothesize that the response of human mesenchymal stromal cells (hMSC) and osteoblast-like cells on Ti45Nb surfaces can be improved by a novel nanoporous surface structure. For this purpose, an etching technique using hydrogen peroxide electrolyte solution was applied to Ti45Nb. The treated surfaces were characterized using SEM, LSM, AFM, nanoindentation, and contact angle measurements. Cell culture experiments using hMCS and MG-63 were conducted. The H2O2 treatment resulted in surface nanopores, an increase in surface wettability and a reduction in surface hardness. The proliferation of MG-63 was enhanced on TiNb45 compared to Ti6Al4V. MG-63 focal adhesion complexes were detected on all Ti45Nb surfaces, whereas the nanostructures notably increased the cell area and decreased cell solidity, indicating stimulated cell spreading and pseudopodia formation. Alizarin red stainings indicated that the nanoporous surfaces stimulated the osteogenic differentiation of hMSC. It can be concluded that the proposed surface treatment could potentially help to stimulate the osseointegration behaviour of the advantageous low stiff Ti45Nb alloy.


Assuntos
Ligas/química , Células-Tronco Mesenquimais/citologia , Nanoporos/ultraestrutura , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/química , Microscopia Eletrônica de Varredura , Osteogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA