RESUMO
Microplastics (MPs) from personal care and cosmetic products (PCCPs) pose a threat to aquatic environment due to the small size and the complexity of composition. Although the habits of personal care behaviors (PCBs) vary from individuals affecting MPs emissions, quantitative research is not sufficient to support high-precision emission estimates and targeted management decisions. Based on a questionnaire survey about PCBs and laboratory experiments on corresponding PCCPs utilization, this study proposed a bottom-up micro-simulation method to quantify MPs emissions combining multinomial logit model and categorized emission coefficients, and identified the impact of individual attributes on the emissions. The results show that the annual PCBs-derived MPs emissions amounted to 2931.8 trillion particles in China, of which teeth brushing, face washing, and bathing behavior accounted for 29%, 36% and 35%, respectively. The residents discharged an average of 2.18 million particles per capita per year with 95% confidence interval of 0.58-4.34 million particles. Gender, age and living region had greater impacts on PCBs-derived MPs emissions. The effect of living region was significantly related to local temperature and humidity. The estimation based on the MPs discharge characteristics of PCBs provides high-precision method regarding the MPs emission from people's daily life and contributes to further understanding the source of MPs and initiating environmental control strategies.
Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análiseRESUMO
PURPOSE: To compare the efficacy, safety and recurrence rate of platelet-rich fibrin (PRF) grafts and limbal conjunctival autografts (LCAs) following pterygium excision. METHODS: A total of 108 patients (108 eyes) with primary pterygium were included in this study and were divided into group A (56 eyes) and group B (52 eyes). Patients in group A underwent excision of the pterygium followed by LCA while patients in group B underwent PRF grafts following pterygium excision. The PRF was produced using the patient's own whole-blood sample by centrifugation and extrusion. The surgery time, intraoperative complications, postoperative complications, recurrence rate, intraocular pressure (IOP) and follow-up period were recorded and evaluated between the two groups. RESULTS: The mean surgery time was significantly shorter in group B (25.0 ± 4.2 min) than in group A (36.5 ± 6.3 min) (P < .001). Recurrence was observed in two cases (3.6%) in group A while no recurrence was observed in group B. No graft loss was observed in either group. No other intra/postoperative complications such as a tear in the graft, injury to the medial rectus muscle, excessive bleeding, scleral necrosis, graft oedema, graft necrosis, pannus formation or symblepharon appeared in either group. CONCLUSIONS: This study presented with a promising outcome of PRF graft applications in primary pterygium surgery. The use of PRF following pterygium excision is a simple, easily applicable, and comfortable method for both patients and surgeons, with less time consumption, recurrence rate and complications, which could be widely used in pterygium management.