Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 140: 1-22, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875360

RESUMO

3D bioprinting has been developed as an effective and powerful technique for the fabrication of living tissue constructs in a well-controlled manner. However, most existing 3D bioprinting strategies face substantial challenges in replicating delicate and intricate tissue-specific structural organizations using mechanically weak biomaterials such as hydrogels. Embedded bioprinting is an emerging bioprinting strategy that can directly fabricate complex structures derived from soft biomaterials within a supporting matrix, which shows great promise in printing large vascularized tissues and organs. Here, we provide a state-of-the-art review on the development of embedded bioprinting including extrusion-based and light-based processes to manufacture complex tissue constructs with biomimetic architectures. The working principles, bioinks, and supporting matrices of embedded printing processes are introduced. The effect of key processing parameters on the printing resolution, shape fidelity, and biological functions of the printed tissue constructs are discussed. Recent innovations in the processes and applications of embedded bioprinting are highlighted, such as light-based volumetric bioprinting and printing of functional vascularized organ constructs. Challenges and future perspectives with regard to translating embedded bioprinting into an effective strategy for the fabrication of functional biological constructs with biomimetic structural organizations are finally discussed. STATEMENT OF SIGNIFICANCE: It is still challenging to replicate delicate and intricate tissue-specific structural organizations using mechanically-weak hydrogels for the fabrication of functional living tissue constructs. Embedded bioprinting is an emerging 3D printing strategy that enables to produce complex tissue structures directly inside a reservoir filled with supporting matrix, which largely widens the choice of bioprinting inks to ECM-like hydrogels. Here we aim to provide a comprehensive review on various embedded bioprinting techniques mainly including extrusion-based and light-based processes. Various bioinks, supporting matrices, key processing parameters as well as their effects on the structures and biological functions of resultant living tissue constructs are discussed. We expect that it can provide an important reference and generate new insights for the bioprinting of large vascularized tissues and organs with biological functions.


Assuntos
Bioimpressão , Materiais Biocompatíveis , Bioimpressão/métodos , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
2.
Biomater Sci ; 7(3): 798-808, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30656310

RESUMO

Autoimmune disorders, such as multiple sclerosis and type 1 diabetes, occur when immune cells fail to recognize "self" molecules. Recently, studies have revealed aberrant inflammatory signaling through pathogen sensing pathways, such as toll-like receptors (TLRs), during autoimmune disease. Therapeutic inhibition of these pathways might attenuate disease development, skewing disease-causing inflammatory cells towards cell types that promote tolerance. Delivering antagonistic ligands to a TLR upstream of an inflammatory signaling cascade, TLR9, has demonstrated exciting potential in a mouse model of MS; however, strategies that enable sustained delivery could reduce the need for repeated administration or enhance therapeutic efficacy. We hypothesized that GpG - an oligonucleotide TLR9 antagonist - which is inherently anionic, could be self-assembled into polyelectrolyte multilayers (PEMs) with a cationic, degradable poly(ß-amino ester) (Poly1). We hypothesized that degradable Poly1/GpG PEMs could promote sustained release of GpG and modulate inflammatory immune cell functions. Here we demonstrate layer-by-layer assembly of degradable PEMs, as well as subsequent degradation and release of GpG. Following assembly and release, GpG maintains the ability to reduce dendritic cell activation and inflammatory cytokine secretion, restrain TLR9 signaling, and polarize myelin specific T cells towards regulatory phenotypes and functions in primarily immune cells. These results indicate that degradable PEMs may be able to promote tolerogenic immune function in the context of autoimmunity.


Assuntos
Tolerância Imunológica , Polieletrólitos/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/imunologia , Oligodesoxirribonucleotídeos/metabolismo , Fenótipo , Polieletrólitos/química , Polímeros/química , Polímeros/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor Toll-Like 9/agonistas
3.
Acta Biomater ; 68: 168-177, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29292166

RESUMO

Nucleic acid delivery vehicles are poised to play an important role in delivering gene therapy for vaccines and immunotherapies, and in delivering nucleic acid based adjuvants. A number of common polymeric delivery vehicles used in nucleic acid delivery have recently been shown to interact with immune cells and directly stimulate immunogenic responses, particularly in particle form. Poly(beta-amino esters) were designed for nucleic acid delivery and have demonstrated promising performance in a number of vaccine and therapeutic studies. Yet, little work has characterized the mechanisms by which these polymers activate immune cells. Here we demonstrate that a poly(beta-amino ester) activates antigen presenting cells in soluble and particulate forms, and that these effects are independent of TLR signaling pathways. Moreover, we show the polymers induce activation independent of NF-κB signaling, but do activate IRF, an important innate inflammatory pathway. New knowledge linking physicochemical features of poly(beta-amino esters) or other polymeric carriers to inflammatory mechanisms could support more rational design approaches for vaccines and immunotherapies harnessing these materials. SIGNIFICANCE STATEMENT: The last several years have brought exciting work exploring biomaterials as delivery vehicles for immunotherapies, vaccines, and gene therapies. However, a gap remains between the striking finding that many biomaterials exhibit intrinsic immunogenic features, and the specific structural properties that drive these responses. The results in the current study indicate PBAEs cause macrophage activation by pathways that are distinct from pathways activated by common vaccine and immunotherapies components, such as toll-like receptor agonists. Thus, the work reveals new mechanistic details that can be exploited in investigating other materials, and to support more rational design of future biomaterial vaccines and immunotherapy carriers.


Assuntos
Ativação de Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Polímeros/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fatores Reguladores de Interferon , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Polímeros/química , Células RAW 264.7 , RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Toll-Like/metabolismo
4.
Biomater Sci ; 6(1): 115-124, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29177268

RESUMO

The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale. These capabilities in vaccines and immunotherapies could allow more rational design to speed efficient design and clinical translation. Here we employed soft lithography to generate polymer microdisk vaccines with uniform structures and tunable compositions of vaccine antigens and toll like receptor agonists (TLRas) that serve as molecular adjuvants. Compared to conventional PLGA particles formed by emulsion, microdisks provided a dramatic improvement in the consistency of properties such as diameter. During culture with primary dendritic cells (DCs) from mice, microdisks were internalized by the cells without toxicity, while promoting co-delivery of antigen and TLRa to the same cell. Analysis of DC surface activation markers by flow cytometry revealed microdisk vaccines activated dendritic cells in a manner that depended on the level of TLRa, while antigen processing and presentation depended on the amount of antigen in the microdisks. Together, this work demonstrates the use of advanced manufacturing techniques to produce uniform vaccines that direct DC function depending on the composition in the disks.


Assuntos
Imunoterapia/métodos , Animais , Células Dendríticas/metabolismo , Células Dendríticas/fisiologia , Citometria de Fluxo , Ácido Láctico/química , Camundongos , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA