Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Small ; 20(20): e2309200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295089

RESUMO

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pKa of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT). Two partial mesophase diagrams are generated for both ALC-0315/PT LNPs and SM-102/PT LNPs as a function of two factors, ionizable lipid ratio (α, 0-100 mol%) and pH condition (pH 3-11). Furthermore, the impact of different LNP stabilizers (Pluronic F127, Pluronic F108, and Tween 80) on their pH-dependent phase behavior is evaluated. The findings offer insights into the self-assembled mesostructure and ionization state of the studied LNPs with potentially enhanced endosomal escape ability. This research is relevant to developing innovative next-generation LNP systems for delivering various therapeutics.


Assuntos
Álcoois Graxos , Lipídeos , Cristais Líquidos , Nanopartículas , Nanopartículas/química , Álcoois Graxos/química , Cristais Líquidos/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Íons/química , Lipossomos
2.
Faraday Discuss ; 191: 545-563, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27453499

RESUMO

Self-assembled lipid lyotropic liquid crystalline nanoparticles such as hexosomes and cubosomes contain internal anisotropic and isotropic nanostructures, respectively. Despite the remarkable potential of such nanoparticles in various biomedical applications, the stabilisers used in formulating the nanoparticles are often limited to commercially available polymers such as the Pluronic block copolymers. This study explored the potential of using Reversible Addition-Fragmentation chain Transfer (RAFT) technology to design amphiphilic brush-type polymers for the purpose of stabilising phytantriol and monoolein-based lipid dispersions. The synthesised brush-type polymers consisted of a hydrophobic C12 short chain and a hydrophilic poly(ethylene glycol)methyl ether acrylate (PEGA) long chain with multiple 9-unit poly(ethylene oxide) (PEO) brushes with various molecular weights. It was observed that increasing the PEO brush density and thus the length of the hydrophilic component improved the stabilisation effectiveness for phytantriol and monoolein-based cubosomes. Synchrotron small-angle X-ray scattering (SAXS) experiments confirmed that the RAFT polymer-stabilised cubosomes had an internal double-diamond cubic phase with tunable water channel sizes. These properties were dependent on the molecular weight of the polymers, which were considered in some cases to be anisotropically distributed within the cubosomes. The in vitro toxicity of the cubosomes was assessed by cell viability of two human adenocarcinoma cell lines and haemolytic activities to mouse erythrocytes. The results showed that phytantriol cubosomes stabilised by the RAFT polymers were less toxic compared to their Pluronic F127-stabilised analogues. This study provides valuable insight into designing non-linear amphiphilic polymers for the effective stabilisation and cellular toxicity improvement of self-assembled lipid lyotropic liquid crystalline nanoparticles.


Assuntos
Lipídeos/química , Cristais Líquidos , Nanopartículas/toxicidade , Polímeros , Animais , Linhagem Celular Tumoral , Eritrócitos/efeitos dos fármacos , Humanos , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Langmuir ; 31(39): 10871-80, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26362479

RESUMO

Lyotropic liquid crystalline nanoparticle dispersions are of interest as delivery vectors for biomedicine. Aqueous dispersions of liposomes, cubosomes, and hexosomes are commonly stabilized by nonionic amphiphilic block copolymers to prevent flocculation and phase separation. Pluronic stabilizers such as F127 are commonly used; however, there is increasing interest in using chemically reactive stabilizers for enhanced functionalization and specificity in therapeutic delivery applications. This study has explored the ability of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated with poly(ethylene glycol) (DSPE-PEGMW) (2000 Da ≤ MW ≤ 5000 Da) to engineer and stabilize phytantriol-based lyotropic liquid crystalline dispersions. The poly(ethylene glycol) (PEG) moiety provides a tunable handle to the headgroup hydrophilicity/hydrophobicity to allow access to a range of nanoarchitectures in these systems. Specifically, it was observed that increasing PEG molecular weight promotes greater interfacial curvature of the dispersions, with liposomes (Lα) present at lower PEG molecular weight (MW 2000 Da), and a propensity for cubosomes (QII(P) or QII(D) phase) at MW 3400 Da or 5000 Da. In comparison to Pluronic F127-stabilized cubosomes, those made using DSPE-PEG3400 or DSPE-PEG5000 had enlarged internal water channels. The toxicity of these cubosomes was assessed in vitro using A549 and CHO cell lines, with cubosomes prepared using DSPE-PEG5000 having reduced cytotoxicity relative to their Pluronic F127-stabilized analogues.


Assuntos
Álcoois Graxos/química , Álcoois Graxos/toxicidade , Lipídeos/química , Cristais Líquidos/química , Cristais Líquidos/toxicidade , Nanopartículas/química , Nanopartículas/toxicidade , Polietilenoglicóis/química , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Meios de Cultura , Humanos , Microscopia Eletrônica de Transmissão
4.
Anal Chim Acta ; 1306: 342615, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692795

RESUMO

The Caco-2 cells were used as intestinal epithelial cell model to illustrate the hyperuricemia (HUA) mechanism under the co-culture of the imbalanced intestinal microbiome in this work. The uric acid (UA) concentration in the HUA process was monitored, and could be up to 425 µmol/L at 8 h co-cultured with the imbalanced intestinal microbiome. Single-cell potentiometry based on ion-selective microelectrode was used to study extracellular calcium change, which is hypothesized to play an important role in the UA excretion. The potential signal of the calcium in the extremely limited microenvironment around single Caco-2 cell was recorded through the single-cell analysis platform. The potential signal of sharp decrease and slow increase followed within a few seconds indicates the sudden uptake and gradually excretion process of calcium through the cell membrane. Moreover, the value of the potential decrease increases with the increase of the time co-cultured with the imbalanced intestinal microbiome ranging from 0 to 8 h. The Ca2+ concentration around the cell membrane could decrease from 1.3 mM to 0.4 mM according to the potential decrease of 27.0 mV at the co-culture time of 8 h. The apoptosis ratio of the Caco-2 cells also exhibits time dependent with the co-culture of the imbalanced intestinal microbiome, and was 39.1 ± 3.6 % at the co-culture time of 8 h, which is much higher than the Caco-2 cells without any treatment (3.9 ± 2.9 %). These results firstly provide the links between the UA excretion with the apoptosis of the intestinal epithelial cell under the interaction of the imbalanced intestinal microbiome. Moreover, the apoptosis could be triggered by the calcium signaling.


Assuntos
Microbioma Gastrointestinal , Análise de Célula Única , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Células CACO-2 , Humanos , Microeletrodos , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Cálcio/análise , Fibra de Carbono , Intestinos/microbiologia , Potenciometria/instrumentação , Adenosina/análise , Apoptose
5.
J Colloid Interface Sci ; 634: 279-289, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542965

RESUMO

HYPOTHESIS: Non-lamellar lyotropic liquid crystal nanoparticles (LLCNPs) are gaining significant interest in the fields of drug delivery and nanomedicine. Traditional, top-down formulation strategies for LLCNPs are typically low-throughput, can lack controllability and reproducibility in the particle size distribution, and may be unsuitable for loading more fragile therapeutics. The development of a controllable, reproducible, scalable, and high-throughput strategy is urgently needed. EXPERIMENTS: Monoolein (MO)-based LLCNPs with various stabilizers (F127, F108, and Tween 80) and phytantriol (PT)-F127 cubosomes were produced at various flow conditions via a bottom-up method using a microfluidic platform. FINDINGS: This simple enabling strategy was used to formulate LLCNPs with lower polydispersity compared to the traditional top-down homogenization method. Significantly, particle size could be quantitatively controlled by varying the overall flow-rate; a scaling law was identified between nanoparticle mean size and the total flow rate (Q) of meansize∼Q-0.15 for MO cubosomes and meansize∼Q-0.19 for PT cubosomes (at a fixed flow rate ratio). Effective size control was achieved for a range of cubosome formulations involving different lipids and stabilizers. The formulation of stable, drug-loaded cubosomes with high encapsulation efficiency using this method was exemplified using calcein as a model drug. This work will further promote the utilisation of LLCNPs in nanomedicine and facilitate their clinical translation.


Assuntos
Cristais Líquidos , Nanopartículas , Cristais Líquidos/química , Microfluídica , Reprodutibilidade dos Testes , Polietilenos/química , Nanopartículas/química , Tamanho da Partícula
6.
Biomater Sci ; 11(17): 5955-5969, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37477383

RESUMO

Synthetic polymer nanodiscs are self-assembled structures formed from amphipathic copolymers encapsulating membrane proteins and surrounding phospholipids into water soluble discs. These nanostructures have served as an analytical tool for the detergent free solubilisation and structural study of membrane proteins (MPs) in their native lipid environment. We established the polymer-lipid nanodisc forming ability of a novel class of amphipathic copolymer comprised of an alternating sequence of N-alkyl functionalised maleimide (AlkylM) of systematically varied hydrocarbon chain length, and cationic N-methyl-4-vinyl pyridinium iodide (MVP). Using a combination of physicochemical techniques, the solubilisation efficiency, size, structure and shape of DMPC lipid containing poly(MVP-co-AlkylM) nanodiscs were determined. Lipid solubilisation increased with AlkylM hydrocarbon chain length from methyl (MM), ethyl (EtM), n-propyl (PM), iso-butyl (IBM) through to n-butyl (BM) maleimide bearing polymers. More hydrophobic derivatives formed smaller sized nanodiscs and lipid ordering within poly(MVP-co-AlkylM) nanodiscs was affected by nanodisc size. In dye-release assays, shorter N-alkyl substituted polymers, particularly poly(MVP-co-EtM), exhibited low activities against eukaryotic mimetic POPC membrane and increased their liposome disruption as POPC : POPG membrane mixtures increased in their anionic POPG component, resembling the charge profile of bacterial membranes. These trends in membrane selectivity were transferred towards native cell systems in which gram-positive Staphylococcus aureus and gram-negative Acenobacter baumannii bacterial strains were relatively susceptible to disruption by hydrophobic n-butyl- and n-propyl-poly(MVP-co-AlkylM) derivatives compared to human red blood cells (HRBCs), with a more pronounced selectivity resulting from poly(MVP-co-PM). Such selective membrane interaction by less hydrophobic polymers provides a framework for polymer design towards applications including selective membrane component solubilisation, biosensing and antimicrobial development.


Assuntos
Nanoestruturas , Polímeros , Humanos , Polímeros/química , Proteínas de Membrana/química , Nanoestruturas/química , Maleimidas , Fosfolipídeos/química , Bicamadas Lipídicas/química
7.
ACS Appl Mater Interfaces ; 14(16): 18974-18988, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416647

RESUMO

Hydroxyapatite (HAp)-coated metallic implants are known for their excellent bioactivity and osteoconductivity. However, infections associated with the microstructure of the HAp coatings may lead to implant failures as well as increased morbidity and mortality. This work addresses the concerns about infections by developing novel composite coatings of HAp and gallium liquid metal (GaLM) using atmospheric plasma spray (APS) as the coating technique. Five weight percent Ga was mixed into a commercially supplied HAp powder using an orbital shaker; then, the HAp-Ga particle feedstock was coated onto Ti6Al4V substrates using the APS technique. The X-ray diffraction results indicated that Ga did not form any Ga-related phases in either the HAp-Ga powder or the respective coating. The GaLM filled the pores of the HAp coating presented both on the top surface and within the coating, especially at voids and cracks, to prevent failures of the coating at these locations. The wettability of the surface was changed from hydrophobic for the HAp coating to hydrophilic for the HAp-Ga composite coating. Finally, the HAp-Ga coating presented excellent antibacterial efficacies against both initial attachments and established biofilms generated from methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa after 18 h and 7 days of incubation in comparison to the control HAp coating. This study shows that GaLM improves the antibacterial properties of HAp-based coatings without sacrificing the beneficial properties of conventional HAp coatings. Thus, the HAp-Ga APS coating is a viable candidate for antibacterial coatings.


Assuntos
Gálio , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Gálio/farmacologia , Teste de Materiais , Pós , Propriedades de Superfície , Titânio/química
8.
Langmuir ; 27(24): 14757-66, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22026367

RESUMO

Lipid liquid crystalline nanoparticles such as cubosomes and hexosomes have unique internal nanostructures that have shown great potential in drug and nutrient delivery applications. The triblock copolymer, Pluronic F127, is usually employed as a steric stabilizer in dispersions of lipid nanostructured particles. In this study, we investigated the formation, colloidal stability and internal nanostructure and morphology of glyceryl monooleate (GMO) and phytantriol (PHYT) cubosome dispersions on substituting ß-casein with F127 in increasing proportion as the stabilizer. Internal structure and particle morphology were evaluated using small-angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (cryo-TEM), while protein secondary structure was studied using synchrotron radiation circular dichroism (SRCD). The GMO cubosome dispersion stabilized by ß-casein alone displayed a V(2) (Pn3m) phase structure and a V(2) to H(2) phase transition at 60 °C. In comparison, F127-stabilized GMO dispersion had a V(2) (Im3m) phase structure and the H(2) phase only appeared at higher temperature, that is, 70 °C. In the case of PHYT dispersions, only the V(2) (Pn3m) phase structure was observed irrespective of the type and concentration of stabilizers. However, ß-casein-stabilized PHYT dispersion displayed a V(2) to H(2) to L(2) transition behavior upon heating, whereas F127-stabilized PHYT dispersion displayed only a direct V(2) to L(2) transition. The protein secondary structure was not disturbed by interaction with GMO or PHYT cubosomes. The results demonstrate that ß-casein provides steric stabilization to dispersions of lipid nanostructured particles and avoids the transition to Im3m structure in GMO cubosomes, but also favors the formation of the H(2) phase, which has implications in drug formulation and delivery applications.


Assuntos
Caseínas/química , Química Farmacêutica/métodos , Coloides/química , Sistemas de Liberação de Medicamentos/métodos , Cristais Líquidos/química , Nanopartículas/química , Caseínas/análise , Dicroísmo Circular , Coloides/análise , Microscopia Crioeletrônica , Álcoois Graxos/química , Glicerídeos/química , Temperatura Alta , Cristais Líquidos/ultraestrutura , Nanopartículas/ultraestrutura , Poloxâmero/química , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Síncrotrons , Raios X
9.
Int J Nanomedicine ; 14: 6749-6777, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692550

RESUMO

Janus particles, which are named after the two-faced Roman god Janus, have two distinct sides with different surface features, structures, and compositions. This asymmetric structure enables the combination of different or even incompatible physical, chemical, and mechanical properties within a single particle. Much effort has been focused on the preparation of Janus particles with high homogeneity, tunable size and shape, combined functionalities, and scalability. With their unique features, Janus particles have attracted attention in a wide range of applications such as in optics, catalysis, and biomedicine. As a biomedical device, Janus particles offer opportunities to incorporate therapeutics, imaging, or sensing modalities in independent compartments of a single particle in a spatially controlled manner. This may result in synergistic actions of combined therapies and multi-level targeting not possible in isotropic systems. In this review, we summarize the latest advances in employing Janus particles as therapeutic delivery carriers, in vivo imaging probes, and biosensors. Challenges and future opportunities for these particles will also be discussed.


Assuntos
Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas Multifuncionais/química , Nanopartículas Multifuncionais/uso terapêutico , Nanomedicina Teranóstica/métodos , Animais , Técnicas Biossensoriais , Meios de Contraste/química , Humanos , Polímeros/química
10.
ACS Appl Mater Interfaces ; 10(30): 25174-25185, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29963859

RESUMO

Chemotherapy using cytotoxic agents, such as paclitaxel (PTX), is one of the most effective treatments for advanced ovarian cancer. However, due to nonspecific targeting of the drug and the presence of toxic solvents required for dissolving PTX prior to injection, there are several serious side effects associated with this treatment. In this study, we explored self-assembled lipid-based nanoparticles as PTX carriers, which were able to improve its antitumour efficacy against ovarian cancer. The nanoparticles were also functionalized with epidermal growth factor receptor (EGFR) antibody fragments to explore the benefit of tumor active targeting. The formulated bicontinuous cubic- and sponge-phase nanoparticles, which were stabilized by Pluronic F127 and a lipid poly(ethylene glycol) stabilizer, showed a high capacity of PTX loading. These PTX-loaded nanoparticles also showed significantly higher cytotoxicity than a free drug formulation against HEY ovarian cancer cell lines in vitro. More importantly, the nanoparticle-based PTX treatments, with or without EGFR targeting, reduced the tumor burden by 50% compared to PTX or nondrug control in an ovarian cancer mouse xenograft model. In addition, the PTX-loaded nanoparticles were able to extend the survival of the treatment groups by up to 10 days compared to groups receiving free PTX or nondrug control. This proof-of-concept study has demonstrated the potential of these self-assembled lipid nanomaterials as effective drug delivery nanocarriers for poorly soluble chemotherapeutics, such as PTX.


Assuntos
Nanopartículas , Animais , Antineoplásicos Fitogênicos , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Lipídeos , Camundongos , Neoplasias Ovarianas , Paclitaxel , Polietilenoglicóis
11.
Drug Deliv ; 24(1): 1770-1781, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29160134

RESUMO

The advent of nanomedicine requires novel delivery vehicles to actively target their site of action. Here, we demonstrate the development of lung-targeting drug-loaded liposomes and their efficacy, specificity and safety. Our study focuses on glucocorticoids methylprednisolone (MPS), a commonly used drug to treat lung injuries. The steroidal molecule was loaded into functionalized nano-sterically stabilized unilamellar liposomes (NSSLs). Targeting functionality was performed through conjugation of surfactant protein A (SPANb) nanobodies to form MPS-NSSLs-SPANb. MPS-NSSLs-SPANb exhibited good size distribution, morphology, and encapsulation efficiency. Animal experiments demonstrated the high specificity of MPS-NSSLs-SPANb to the lung. Treatment with MPS-NSSLs-SPANb reduced the levels of TNF-α, IL-8, and TGF-ß1 in rat bronchoalveolar lavage fluid and the expression of NK-κB in the lung tissues, thereby alleviating lung injuries and increasing rat survival. The nanobody functionalized nanoparticles demonstrate superior performance to treat lung injury when compared to that of antibody functionalized systems.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lipossomos/química , Metilprednisolona/química , Metilprednisolona/farmacologia , Nanopartículas/química , Proteína A Associada a Surfactante Pulmonar/química , Animais , Líquido da Lavagem Broncoalveolar/química , Sistemas de Liberação de Medicamentos/métodos , Glucocorticoides/química , Glucocorticoides/farmacologia , Interleucina-8/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Surfactantes Pulmonares/química , Surfactantes Pulmonares/farmacologia , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Nanoscale ; 7(7): 2905-13, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25516406

RESUMO

Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.


Assuntos
Receptores ErbB/química , Lipídeos/química , Nanopartículas/química , Microscopia Crioeletrônica , Portadores de Fármacos/química , Álcoois Graxos/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Ligantes , Lipossomos/química , Cristais Líquidos , Maleimidas/química , Nanotecnologia , Tamanho da Partícula , Fosfatidiletanolaminas/química , Proteínas Recombinantes/química , Espalhamento de Radiação , Compostos de Sulfidrila/química , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA