Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 149(4): 1151-1159, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38259149

RESUMO

Edible chrysanthemum is widely cultivated and used as an important ingredient of medicine, tea and multifunctional food. During the planting of chrysanthemum, pesticides are extensively used for preventing plant diseases and insect pests. To ensure the food safety of edible chrysanthemum, rapid detection methods are urgently needed for on-site inspection. In this study, a graphene oxide/Au nanoparticle (GO/Au NP) cellulose substrate was prepared through layer-by-layer assembly of GO and Au NPs on a mixed cellulose ester membrane. Surface-enhanced Raman spectroscopy (SERS) detection of four types of organophosphorus and organosulfur pesticides was achieved by filtering the extracting solution through the substrate and analysing SERS spectra. Qualitative and semi-quantitative detection of fenthion, phoxim, isocarbophos and thiram was accomplished with the detection limits of 38.01, 8.13, 48.97 and 8.74 ng mL-1, respectively. A spiking experiment further demonstrated the feasibility of this method for rapid and on-site detection of mixed pesticides in chrysanthemum. This study provides a new approach for rapid detection of multiple hazardous substances in flowering and herbal plants.


Assuntos
Grafite , Nanopartículas Metálicas , Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Ouro/química , Nanopartículas Metálicas/química , Praguicidas/análise , Análise Espectral Raman/métodos , Celulose
2.
Anal Chem ; 93(2): 946-955, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33206502

RESUMO

Nonspecific binding and weak spectral discernment are the main challenges for surface-enhanced Raman scattering (SERS) detection, especially in real sample analysis. Herein, molecularly imprinted polymer (MIP)-based core-shell AuNP@polydopamine (AuNP@PDA-MIP) nanoparticles (NPs) are designed and immobilized on an electrochemically reduced MoS2-modified screen-printed electrode (SPE). This portable electrochemical-Raman interface offers the dual functions of electrokinetic preseparation (EP) and MIP trapping of charged molecules so that a reliable SERS recognition with molecular selectivity and high sensitivity can be achieved. Core-shell AuNP@PDA-MIP NPs can be controllably synthesized, possess predesigned specific recognition, and provide "hot spots" at the junction of NPs. The introduction of an electric field enables the autonomous exclusion and separation of similarly charged molecules as well as attraction and concentration of the oppositely charged molecules by electrostatic attraction. Subsequently, the specific MIP recognition cavities allow selective adsorption of targets on the interface without the interference of analogues. Owing to the distinctive design of the multiple coupling separation, trapping, and enrichment strategies, the MIP-based SERS-active interface can be used for label-free detection of charged molecules in real samples without pretreatment. As a proof-of-concept study, label-free SERS detection of charged phthalate plasticizers (PAEs) was demonstrated with a detection limit as low as 2.7 × 10-12 M for dimethyl phthalate (DMP) and 2.3 × 10-11 M for di(2-ethylhexyl) phthalate (DEHP). This sensing strategy for in situ SERS analysis of charged pollutants or toxins holds vast promises for a wide range of in-field applications.


Assuntos
Impressão Molecular , Ácidos Ftálicos/análise , Plastificantes/análise , Ouro/química , Indóis/química , Estrutura Molecular , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Análise Espectral Raman , Propriedades de Superfície
3.
Chem Asian J ; 10(9): 1836-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26177967

RESUMO

The covalent boron-diol interaction enables elaborate design of boronic acid-based saccharide sensors. Over the last decade, this research topic has been well developed thanks to the integration of boronic acid chemistry with a range of techniques, including supramolecular chemistry, materials chemistry, surface modification, and nanotechnology. New sensing strategies and platforms have been introduced and remarkable progress has been achieved to fully utilize the unique property of boron-diol interaction and to improve the binding affinity towards different targets, especially under physiological conditions. In this review, the latest progress over the past 30 months (from late 2012 to early 2015) is highlighted and discussed to shed light on this versatile and promising platform for saccharide sensing.


Assuntos
Ácidos Borônicos/química , Carboidratos/análise , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Peptídeos/química , Polímeros/química , Animais , Técnicas Biossensoriais/métodos , Humanos , Hidrogéis/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA