Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(17): 6847-6852, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38639290

RESUMO

Organic photoelectrochemical transistor (OPECT) has shown substantial potential in the development of next-generation bioanalysis yet is limited by the either-or situation between the photoelectrode types and the channel types. Inspired by the dual-photoelectrode systems, we propose a new architecture of dual-engine OPECT for enhanced signal modulation and its biosensing application. Exemplified by incorporating the CdS/Bi2S3 photoanode and Cu2O photocathode within the gate-source circuit of Ag/AgCl-gated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel, the device shows enhanced modulation capability and larger transconductance (gm) against the single-photoelectrode ones. Moreover, the light irritation upon the device effectively shifts the peak value of gm to zero gate voltage without degradation and generates larger current steps that are advantageous for the sensitive bioanalysis. Based on the as-developed dual-photoelectrode OPECT, target-mediated recycling and etching reactions are designed upon the CdS/Bi2S3, which could result in dual signal amplification and realize the sensitive microRNA-155 biodetection with a linear range from 1 fM to 100 pM and a lower detection limit of 0.12 fM.


Assuntos
Cobre , Técnicas Eletroquímicas , Sulfetos , Tiofenos , Técnicas Eletroquímicas/instrumentação , Cobre/química , Sulfetos/química , Compostos de Cádmio/química , Técnicas Biossensoriais/instrumentação , Bismuto/química , Transistores Eletrônicos , Processos Fotoquímicos , Poliestirenos/química , MicroRNAs/análise , Eletrodos , Polímeros/química
2.
Molecules ; 24(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121968

RESUMO

Microbial corrosion is a universal phenomenon in salt water media such as seawater and wastewater environments. As a kind of efficient protective metal coating for steel, the damage of the Zn-Ni alloy coating was found to be accelerated under microbial corrosive conditions. To solve this problem, chitosan, which is considered a natural product with high antibacterial efficiency, was added to Zn-Ni electrolytes as a functional ingredient of electrodeposited Zn-Ni-chitosan coatings. It was found that the addition of chitosan significantly and negatively shifted the electrodeposition potentials and influenced the Ni contents, the phase composition, and the surface morphologies. By exposing the coatings in a sulfate-reducing bacteria medium, the microbial corrosion resistance was investigated. The results showed that compared to the Zn-Ni alloy coating, Zn-Ni-chitosan coatings showed obvious inhibiting effects on sulfate-reducing bacteria (SRB) and the corrosion rates of these coatings were mitigated to some degree. Further research on the coatings immersed in an Escherichia coli-suspended phosphate buffer saline medium showed that the bacteria attachment on the coating surface was effectively reduced, which indicated enhanced antibacterial properties. As a result, the Zn-Ni-chitosan coatings showed remarkably enhanced anticorrosive and antibacterial properties.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Níquel/química , Zinco/química , Ligas , Antibacterianos/química , Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos , Incrustação Biológica , Quitosana , Materiais Revestidos Biocompatíveis/química , Corrosão , Galvanoplastia , Teste de Materiais
3.
Bioelectrochemistry ; 157: 108650, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38286079

RESUMO

Microbiologically influenced corrosion (MIC) is a complicated process that happens ubiquitously and quietly in many fields. As a useful nutritional ingredient in microbial culture media, yeast extract (YE) is a routinely added in the MIC field. However, how the YE participated in MIC is not fully clarified. In the present work, the effect of YE on the growth of sulfate reducing prokaryotes (SRP) Desulfovibrio bizertensis SY-1 and corrosion behavior of X70 pipeline steel were studied. It was found that the weight loss of steel coupons in sterile media was doubled when YE was removed from culture media. However, in the SRP assays without YE the number of planktonic cells decreased, but the attachment of bacteria on steel surfaces was enhanced significantly. Besides, the corrosion rate of steel in SRP assays increased fourfold after removing YE from culture media. MIC was not determined for assays with planktonic SRP but only for biofilm assays. The results confirm the effect of YE on D. bizertensis SY-1 growth and also the inhibitory role of YE on MIC.


Assuntos
Desulfovibrio , Aço , Corrosão , Biofilmes , Sulfatos , Plâncton/microbiologia , Meios de Cultura
4.
Bioelectrochemistry ; 145: 108048, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35093618

RESUMO

Biocides are often used to mitigate the microbially influenced corrosion (MIC) of construction materials in many fields. To study the effect of inadequate dosing of non-oxidizing biocide tetrakis (hydroxymethyl) phosphonium sulfate (THPS) on corrosion of pipeline steel caused by microorganisms, a novel marine isolate Desulfovibrio hontreensis SY-21 was selected as a test microorganism. Weight loss rate determination, morphological analyses, and corrosion product analyses combined with electrochemical measurements were performed to investigate the influence of THPS on the MIC of X70 pipeline steel. The responses of sessile and planktonic cells of D. hontreensis to THPS were also studied. Results showed that D. hontreensis cells could significantly promote steel corrosion and induce local corrosion pits. With a THPS addition within the tolerance range of D. hontreensis for the biocide, MIC of the steel was further promoted by 65%. The growth of planktonic cells was inhibited by the biocide, but the number of biofilm cells was significantly increased. This study revealed that THPS concentrations within a specific range increased the corrosive effect of the presence of D. hontreensis by promoting the growth of sessile cells and biofilm formation. Therefore, the use of the biocide in practical applications needs to be properly considered and managed.


Assuntos
Desulfovibrio , Desinfetantes , Biofilmes , Corrosão , Desinfetantes/farmacologia , Flavonoides , Aço/química
5.
Sci Total Environ ; 788: 147573, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34034174

RESUMO

In microbiologically influenced corrosion (MIC) induced by sulfate-reducing bacteria (SRB), the electrons released from iron were transferred via extracellular electron transfer (EET) to the inner cells. Electron mediators and carbon starvation have also been found to promote steel corrosion. This study aimed to investigate the synergistic effects of electron mediators and carbon starvation on MIC and their effect on biofilm catalytic activity. The results demonstrated that the weight losses of X70 steel were 0.68 and 1.03 mg/cm2 in 100% and 10% carbon source (CS) SRB solution, respectively. The addition of riboflavin and cytochrome c increased the corrosion rate by 1.76 and 1.87 times, respectively, in the 100% CS SRB medium compared to the medium without exogenous redox mediators. For the 10% CS SRB medium, the corrosion rate increased by 1.40 and 1.89 times, respectively, when riboflavin and cytochrome c were added. The addition of riboflavin and cytochrome c also enhanced the biocatalytic activity of the SRB biofilm in both the 100% and 10% CS SRB media.


Assuntos
Carbono , Aço , Biofilmes , Corrosão , Desulfovibrio , Oxirredução , Sulfatos
6.
PLoS One ; 11(9): e0162315, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27603928

RESUMO

Certain species of sulfate-reducing bacteria (SRB) use cathodes as electron donors for metabolism, and this electron transfer process may influence the proper protection potential choice for structures. The interaction between SRB and polarized electrodes had been the focus of numerous investigations. In this paper, the impact of cathodic protection (CP) on Desulfovibrio caledoniens metabolic activity and its influence on highs trength steel EQ70 were studied by bacterial analyses and electrochemical measurements. The results showed that EQ70 under -0.85 VSCE CP had a higher corrosion rate than that without CP, while EQ70 with -1.05 VSCE had a lower corrosion rate. The enhanced SRB metabolic activity at -0.85 VSCE was most probably caused by the direct electron transfer from the electrode polarized at -0.85 VSCE. This direct electron transfer pathway was unavailable in -1.05 VSCE. In addition, the application of cathodic protection led to the transformation of sulfide rusts into carbonates rusts. These observations have been employed to provide updated recommendations for the optimum CP potential for steel structures in the presence of SRB.


Assuntos
Aço/química , Bactérias Redutoras de Enxofre/metabolismo , Corrosão , Meios de Cultura , Espectroscopia Dielétrica , Técnicas Eletroquímicas , Eletrodos , Concentração de Íons de Hidrogênio , Ferro/química , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA